west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "chitosan" 34 results
  • Islet biomimetic microenvironment constructed by chitosan oligosaccharide protects islets from hypoxia-induced damage by reducing intracellular reactive oxygen species

    ObjectiveGelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/chitosan oligosaccharide (COS) hydrogel was used to construct islet biomimetic microenvironment, and to explore the improvement effect of GelMA/HAMA/COS on islet activity and function under hypoxia. Methods Islets cultured on the tissue culture plate was set as the control group, on the GelMA/HAMA/COS hydrogel with COS concentrations of 0, 1, 5, 10, and 20 mg/mL respectively as the experimental groups. Scanning electron microscopy was used to observe the microscopic morphology, rheometer test to evaluate the gel-forming properties, contact angle to detect the hydrophilicity, and the biocompatibility was evaluated by the scaffold extract to L929 cells [using cell counting kit 8 (CCK-8) assay]. The islets were extracted from the pancreas of 8-week-old Sprague Dawley rats and the islet purity and function were identified by dithizone staining and glucose-stimulated insulin secretion (GSIS) assays, respectively. Islets were cultured under hypoxia (1%O2) for 24, 48, and 72 hours, respectively. Calcein-acetyl methyl/propidium iodide (Calcein-AM/PI) staining was used to evaluate the effect of hypoxia on islet viability. Islets were cultured in GelMA/HAMA/COS hydrogels with different COS concentrations for 48 hours, and the reactive oxygen species kits were used to evaluate the antagonism of COS against islet reactive oxygen species production under normoxia (20%O2) and hypoxia (1%O2) conditions. Calcein-AM/PI staining was used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions. Islets were cultured in tissue culture plates (group A), GelMA/HAMA hydrogels (group B), and GelMA/HAMA/COS hydrogels (group C) for 48 hours, respectively. Immunofluorescence and GSIS assays were used to evaluate the effect of COS on islet activity under hypoxia (1%O2) conditions, respectively. Results GelMA/HAMA/COS hydrogel had a porous structure, the rheometer test showed that it had good gel-forming properties, and the contact angle test showed good hydrophilicity. CCK-8 assay showed that the hydrogel in each group had good biocompatibility. The isolated rat islets were almost round, with high islet purity and insulin secretion ability. Islets were treated with hypoxia for 24, 48, and 72 hours, Calcein-AM/PI staining showed that the number of dead cells gradually increased with time, which were significantly higher than those in the non-hypoxia-treated group (P<0.001). Reactive oxygen staining showed that GelMA/HAMA/COS hydrogels with different COS concentrations could antagonize the production of reactive oxygen under normal oxygen and hypoxia conditions, and this ability was positively correlated with COS concentration. Calcein-AM/PI staining indicated that GelMA/HAMA/COS hydrogels with different COS concentrations could improve islet viability under hypoxia conditions, and cell viability was positively correlated with COS concentration. Immunofluorescence staining showed that GelMA/HAMA/COS hydrogel could promote the expression of islet function-related genes under hypoxia conditions. GSIS assay results showed that the insulin secretion of islets in hypoxia condition of group C was significantly higher than that of groups B and C (P<0.05). Conclusion GelMA/HAMA/COS hydrogel has good biocompatibility, promotes islet survival and function by inhibiting reactive oxygen species, and is an ideal carrier for building islet biomimetic microenvironment for islet culture and transplantation.

    Release date:2022-06-08 10:32 Export PDF Favorites Scan
  • PREVENTION EFFECT OF HYDROXYBUTYL CHITOSAN ON PERITONEAL ADHESION IN RATS

    To explore the effect of hydroxybutyl chitosan on the prevention of postoperative peritoneal adhesion in rats. Methods Ninety SD rats (half males and half females) weighing 250-280 g underwent laparotomy with subsequent cecal wall abrasion and peritoneal adhesion. Rats were randomized into 3 groups (n=30 per group): group A, injection of 2 mL hydroxybutyl chitosan solution (2%); group B, injection of 2 mL sodium hyaluronate solution(2%); group C, the abdomen of rat was exposed for 30 seconds and served as control group. The general condition of the rats was observed after operation. The rats were killed 2 and 4 weeks after operation, 15 rats per group at a time, to undergo gross and histologyobservation. The degree of adhesion was evaluated by double-bl ind method. The microstructure of injured electroscope cecal wall in groups A and C was observed with transmission electroscope 4 weeks after operation. Results All rats survived till the end of experiment. At 2 weeks after operation, the adhesion and the hyperplasia of fibrous connective tissue and collagen in groups A and B were sl ight while the adhesion in group C was serious with severe hyperplasia of fibrous connective tissue. According to the measurement classification by Nair histological grading, the difference between groups A and B and group C was significant (P lt; 0.05), while no significant difference was evident between group A and group B (P gt; 0.05). At 4 weeks after operation, the adhesion in group A was mild, and the hyperplasia of fibrous connective tissue and collagen were sl ight; the adhesion and the hyperplasia of fibrous connective tissue and collagen in group C were serious. The levels of group B were between group A and group C. The differences among three groups were significant (P lt; 0.05). Transmission electroscope showed inactive fibroblasts and loose thin collagen fibers in group A, and active fibroblasts and closely collagen fibers arranged in a disorderly manner in group C. Conclusion Hydroxybutyl chitosan can decrease the hyperplasia of fibrous connective tissue and inhibit the activity of fibroblasts significantly, and has a long-term role of preventing peritoneal adhesion.

    Release date:2016-09-01 09:07 Export PDF Favorites Scan
  • EFFECT OF CARBOXYMETHYLCHITOSAN-CARBOXYMETHYLCELLULOSE FILM ON COLONIC ANASTOMOSIS HEALING

    Objective To investigate the effects of carboxymethylchitosan- carboxymethylcellulose (CMCH-CMC) film on the adhesion and heal ing of colonic anastomosis. Methods Sixty-four healthy adult male SD rats was randomly divided into control group and experimental group (n=32). The model of colonic anastomosis was made according to Buckenmaier’ smethod in all rats. The experimental group was treated by wrapping anastomosis with CMCH-CMC film (3 cm × 2 cm) and the control group was not treated. At 7 days and 14 days after operation, the adhesion formation of colonic anastomosis was observed, the tensile strength of the anstomosis was assessed and compared with 6 normal rats, and the hydroxyprol ine (HP) content of the anastomotsis was detected. Results There were 3 deaths in the experimental group and 2 deaths in the control group. The adhesive scores of the experimental group on the 7th and 14th postoperative day [(0.50 ± 0.16) points and (0.45 ± 0.14) points, (Plt; 0.05)] were significantly lower than those of the control group [(1.67 ± 0.15) points and (2.29 ± 0.18) points, (P lt; 0.05)], (Plt; 0.01). Tensile strength were more marked on the 14th postoperative day than on the 7th postoperative day in the control group (Plt; 0.05), but there was no significant difference between the 7th day and the 14th day in the experimental group. The tensile strength of thecontrol group and the experimental group on the 14th postoperative day [(178.36 ± 20.10) and (172.74 ± 22.18) mmHg] were respectively higher than those on the 7th postoperative day [(138.67 ± 16.65) and (130.81 ± 18.38) mmHg] (Plt; 0.01). The tensile strength of the control group and the experimental group on the 7th postoperative day were respectively significantly lower than that of the normal rats (P lt; 0.01). The level of HP in the anastomosis was significantly higher on the 7th postoperative day in the experimental group [(84.47 ± 11.87) μg/mg dried weight] than that of the control group [(55.47 ± 12.89) μg/mg dried weight), (Plt; 0.05)], but there was no significant difference between the experimental group and the control group on the 14th postoperative day [(146.07 ± 14.81) μg/mg dried weight, (137.14 ± 16.81) μg/mg dried weight, (P gt; 0.05)]. Conclusion The CMCH-CMC film can decrease adhesion the formation of colonic anastomosis, but does not interfere with the heal ing of colonic anastomosis.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • TECHNICS OF INACTIVATING/REMOVING MEDICAL CHITOSAN PATHOGEN

    Objective To verify the technics of inactivating/removing pathogens in medical chitosan derived from shrimp shell. Methods Possible pathogen species were included according to the raw material of shrimp shell used in production, then bacillus cereus, porcine parvovirus (PPV) and pseudorabies virus (PRV) were selected as indicator pathogens.Pathogen solution was prepared in accordance with Technical Standard for Disinfection. The processing procedure of medical chitosan was analyzed to determine whether the alkal ization of chitin and the filter steril ization of chitosan were capable of inactivating/removing pathogens and their efficiencies were tested. Results Bacillus cereus was removed by 8 184 cfu/ mL after alkal ization and 30 818 cfu/mL after filter steril ization. The average logarithm inactivation value (LIV) of PPV and PRV after alkal ization were equal to or above 4.76 logTCID50/0.1 mL and 6.67 logTCID50/0.1 mL, respectively, and their average LIV after filter steril ization were 2.25 logTCID50/0.1 mL and 3.04 logTCID50/0.1 mL. The alkal ization of chitin inactivated/removed indicator pathogens effectively, while the filter steril ization of chitosan removed bacterial effectually but could not inactivate viruses completely. Conclusion The alkal ization of chitin can be used as the technics of inactivating/removing pathogens during the preparation process of medical chitosan to guarantee the safety of the product.

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • PREPARATION AND HEMOSTATIC EVALUATION OF CHITOSAN COMPOSITE HEMOSTATIC MEMBRANE.

    Objective To improve the flexibil ity and hemostatic properties of chitosan (CS)/carboxymethyl chitosan (CMCS) hemostatic membrane by using glycerol and etamsylate to modify CS/CMCS hemostatic membrane. To investigate themechanical properties and hemostatic capabil ity of modified CS/CMCS hemostatic membrane. Methods The 2% CS solution, 2% CMCS solution, 10%, 15%, 20%, 25%, 30% glycerol with or without 0.5% etamsylate were used to prepare CS/CMCS hemostatic membrane with or without etamsylate by solution casting according to ratio of 16 ∶ 4 ∶ 5. The tensile properties were evaluated by tensile test according to GB 13022-1991. Twenty venous incisions and five arterial incisions hemorrhage of 1 cm × 1 cm in rabbit ears were treated by CS/CMCS hemostatic membrane modified by 15% (group A) and 25% (group B) of glycerol, and a combination of them and 0.5% etamsylate (groups C and D). The bleeding time and blood loss were recorded. Results The pH of yellow CS/ CMCS hemostatic membrane with thickness of 30-50 μm was 3-4. The incorporation glycerol into CS/CMCS hemostatic membrane resulted in decreasing in tensile strength (7.6%-60.2%) and modulus (97%-99%). However, elongation at break and water content increased 5.7-11.6 times and 13%-125% markedly. CS/CMCS hemostatic membrane adhered to wound rapidly, absorbed water from blood and became curly. The bleeding time and blood loss of venous incisions were (70 ± 3) seconds and (117.2 ± 10.8) mg, (120 ± 10) seconds and (121.2 ± 8.3) mg, (52 ± 4) seconds and (98.8 ± 5.5) mg, and (63 ± 3) seconds and (90.3 ± 7.1) mg in groups A, B, C, and D, respectively; showing significant differences (P lt; 0.05) between groups A, B and groups C, D. The bleeding time and blood loss of arterial incision were (123 ± 10) seconds and (453.3 ± 30.0) mg in group C. Conclusion CS/CMCS hemostatic membrane modified by glycerol and etamsylate can improve the flexibil ity, and shorten the bleeding time.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • CONSTRUCTION OF INJECTABLE TISSUE ENGINEERED NUCLEUS PULPOSUS IN VITRO

    Objective To investigate the feasibil ity of using thermo-sensitive chitosan hydrogen as a scaffold to construct tissue engineered injectable nucleus pulposus (NP). Methods Three-month-old neonatal New Zealand rabbits (male or female) weighing 150-200 g were selected to isolate and culture NP cells. The thermo-sensitive chitosan hydrogel scaffold wasmade of chitosan, disodium β-glycerophosphate and hydroxyethyl cellulose. Its physical properties and gross condition were observed. The tissue engineered NP was constructed by compounding the scaffold and rabbit NP cells. Then, the viabil ity of NP cells in the chitosan hydrogel was observed 2 days after compound culture and the growth condition of NP cells on the scaffold was observed by SEM 7 days after compound culture. NP cells went through histology and immunohistochemistry detection and their secretion of aggrecan and expression of Col II mRNA were analyzed by RT-PCR 21 days after compound culture. Results The thermo-sensitive chitosan hydrogel was l iquid at room temperature and sol idified into gel at 37 (15 minutes) due to crossl inking reaction. Acridine orange-propidiumiodide staining showed that the viabil ity rate of NP cells in chitosan hydrogel was above 90%. Scanning electron microscope observation demonstrated that the NP cells were distributed in the reticulate scaffold, with ECM on their surfaces. The results of HE, toluidine blue, safranin O and histology and immunohistochemistry staining confirmed that the NP cells in chitosan hydrogel were capable of producing ECM. RT-PCR results showed that the secretion of Col II and aggrecan mRNA in NP cells cultured three-dimensionally by chitosan hydrogen scaffold were 0.631 ± 0.064 and 0.832 ± 0.052, respectively,showing more strengths of producing matrix than that of monolayer culture (0.528 ± 0.039, 0.773 ± 0.046) with a significant difference (P lt; 0.05). Conclusion With good cellular compatibilities, the thermo-sensitive chitosan hydrogel makes it possible for NP cells to maintain their normal morphology and secretion after compound culture, and may be a potential NP cells carrier for tissue engineered NP.  

    Release date:2016-09-01 09:05 Export PDF Favorites Scan
  • VANCOMYCIN CATIONIC LIPOSOME COMBINED WITH NANO-HYDROXYAPATITE/CHITOSAN/KONJACGLUCOMANNAN SCAFFOLD FOR TREATMENT OF INFECTED BONE DEFECTS IN RABBITS

    【Abstract】 Objective To investigate the anti-infection and bone repair effects of cationic l i posome-encapsulatedvancomycin combined with the nano-hydroxyapatite/chitosan/konjac glucomannan (n-HA/CS/KGM) composite scaffold invivo. Methods Fifty-one 6-month-old New Zealand white rabbits, weighing 1.5-3.0 kg, were selected to prepare chronicinfectious tibia bone defect model by using Staphylococcus aureus. After 4 weeks, 48 survival rabbits were randomly divided into 4 groups (n=12). After debridement, defect was treated with nothing in group A, with n-HA/CS/KGM composite scaffold in group B, with vancomycin and n-HA/CS/KGM composite scaffold in group C, and with cationic l i posome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold in group D. After 8 weeks of treatment, general observation, X-ray, HE staining, the bacterial culture, and the measurement of the longest diameter of bone defect were done. Results At 4 weeks after modeling, 48 rabbits were diagnosed as having osteomyelitis, including periosteal new bone formation, destruction of bone, and soft tissue swell ing. The Norden score was 3.83 ± 0.52. At 8 weeks after treatment, sinus healed in groups C and D, but sinus was observed in groups A and B; the gross bone pathologieal scores of group D were significantly better than those of groups A and B (P lt; 0.05). Bone defects were repaired completely in group D, the results of the longest diameter of bone defects in group D was significantly better than those in the other 3 groups (P lt; 0.05). New bone formation was observed in groups C and D, but periosteal reactionand marrow low-density shadow were observed in groups A and B; Norden score in group D was significantly better than those in groups A, B, and C (P lt; 0.05). HE staining showed that there were a large number of trabecular bone formation and fibrosis, with no obvious signs of infection in groups C and D, but neutrophil accumulation was observed in groups A and B; Smeltzer scores in groups C and D were significantly better than those in groups A and B (P lt; 0.05). Bacteriological results showed higher negative rate in groups C and D than in groups A and B (P lt; 0.05). Conclusion Cationic l iposome-encapsulated vancomycin and n-HA/CS/KGM composite scaffold can be a good treatment for infectious bone defects in rabbits, providing a new strategy for the therapy of bone defects in chronic infection.

    Release date:2016-08-31 04:22 Export PDF Favorites Scan
  • PREPARATION OF PERSONALIZED BRAIN CAVITY SCAFFOLD WITH THREE-DIMENSIONAL PRINTING TECHNOLOGY BASED ON MAGNETIC RESONANCE IMAGING

    ObjectiveTo explore a method of three-dimensional (3D) printing technology for preparation of personalized rat brain tissue cavity scaffolds so as to lay the foundation for the repair of traumatic brain injury (TBI) with tissue engineered customized cavity scaffolds. MethodsFive male Sprague Dawley rats[weighing (300±10) g] were induced to TBI models by electric controlled cortical impactor. Mimics software was used to reconstruct the surface profile of the damaged cavity based on the MRI data, computer aided design to construct the internal structure. Then collagen-chitosan composite was prepared for 3D bioprinter of bionic brain cavity scaffold. ResultsMRI scans showed the changes of brain tissue injury in the injured side, and the position of the cavity was limited to the right side of the rat brain cortex. The 3D model of personalized cavity containing the internal structure was successfully constructed, and cavity scaffolds were prepared by 3D printing technology. The external contour of cavity scaffolds was similar to that of the injured zone in the rat TBI; the inner positive crossing structure arranged in order, and the pore connectivity was good. ConclusionCombined with 3D reconstruction based on MRI data, the appearance of cavity scaffolds by 3D printing technology is similar to that of injured cavity of rat brain tissue, and internal positive cross structure can simulate the topological structure of the extracellular matrix, and printing materials are collagen-chitosan complexes having good biocompatibility, so it will provide a new method for customized cavity scaffolds to repair brain tissue cavity after TBI.

    Release date:2016-11-14 11:23 Export PDF Favorites Scan
  • INJECTABLE BORATE GLASS/CHITOSAN COMPOSITE AS BRUG CARRIER FOR TREATMENT OF CHRONIC OSTEOMYELITIS

    Objective To evaluate the characterization, biocompatibil ity in vitro and in vivo, and antimicrobial activity of an injectable vancomycin-loaded borate glass/chitosan composite (VBC) so as to lay the foundation for its further cl inical application. Methods The sol id phase of VBC was constituted by borate glass and vancomycin, liquid phase was a mixture of chitosan, citric acid, and glucose with the proportion of 1 ∶ 10 ∶ 20. Solid phase and liquid phase was mixed withthe ratio of 2 ∶ 1. Vancomycin-loaded calcium sulfate (VCS) was produced by the same method using calcium sulfate instead of borate glass and sal ine instead of chitosan, as control. High performance liquid chromatography was applied to detect the release rate of antibiotics from VBC and VCS, and minimum inhibitory concentration (MIC) was tested by using an antibiotic tube dilution method. The structure of the VBC and VCS specimens before and 2, 4, 8, 16, and 40 days after immersion in D-Hank’s was examined by scanning electron microscopy, and the phase composition of VBC was analysed by X-ray diffraction after soaked for 40 days. Thirty-three healthy adult New Zealand white rabbits (weighing, 2.25-3.10 kg; male or female) were used to establ ish the osteomyel itis models according to Norden method. After 4 weeks, the models of osteomyel itis were successfully established in 28 rabbits, and they were randomly divided into 4 groups (groups A, B, C, and D). In group A (n=8), simple debridement was performed; in groups B and C (n=8), defect was treated by injecting VCS or VBC after debridement; and in group D (n=4), no treatment was given. The effectiveness of treatment was assessed using radiological and histological techniques after 2 months. Results The releases of vancomycin from VBC lasted for 30 days; the release rate of vancomycin reached 75% at the first 8 days, then could reached more than 90%. The releases of vancomycin from VCS lasted only for 16 days. The MIC of VBC and VCS were both 2 μg/mL. The VCS had a smooth glass crystal surface before immersion, however, it was almost degradated after 4 days. The fairly smooth surface of the VBC pellet became more porous and rougher with time, X-ray diffraction analysis of VBC soaked for 40 days indicated that the borate glass had gradually converted to hydroxyapatite. After 2 months, the best result of treatment was observed in group C, osteomyelitis symptoms disappeared. The X-ray scores of groups A, B, C, and D were 3.50 ± 0.63, 2.29 ± 0.39, 2.00 ± 0.41, and 4.25 ± 0.64, respectively; Smeltzer scores were 6.00 ± 0.89, 4.00 ± 0.82, 3.57 ± 0.98, and 7.25 ± 0.50, respectively. The scores were significantly higher in group D than in groups A, B, and C (P lt; 0.05), and in group A than in groups B and C (P lt; 0.05). The scores were higher in group B than in group C, but no significant difference was found (P gt; 0.05). Conclusion The VBC is effective in treating chronic osteomyelitis of rabbit by providing a sustained release of vancomycin, in addition to stimulating bone regeneration, so it may be a promising biomaterial for treating chronic osteomyelitis.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • Efficacy of Wound Dressing with Microspheres Containing Levofloxacin on Burns Treatment

    This research was aimed to find the skin irritation and burns treatment effect of wound dressing with microspheres containing levofloxacin. We used reference GB/T16886.10-2005 to evaluate the dressing skin irritation. We prepared rabbit models divided into three groups. The control group was rapped with Vaseline gauze bandage, while the positive control group was rapped with the wounds of nano-silver paste bandage. The experimental sample group was rapped with wound dressing with microspheres containing levofloxacin. We measured the wound without healing area and the hydroxyproline content at the ends of 3 d, 6 d, 9 d, 14 d, 21 d, 28 d. and meanwhile performed histopathological examination. The experimental results showed that the dressing primary irritation index was 0. The nonhealing wound area of theexperimental sample group and positive control group at the ends of 6 d, 9 d, 14 d, 21 d were less than that of the control group (P<0.05). The nonhealing wound area of the experimental sample group at the ends of 9 d and 14 d was significantly lower than that of the positive control group (P<0.05). The hydroxyproline content of the experimental sample group at the ends of 6 d, 9 d and 14 d was significantly higher than that of the positive control group and blank control group (P<0.05). The pathology observed of the experimental sample group at 21 d were the earliest appendages. The wound dressing with microspheres containing levofloxacin has minimal skin irritation, effectively promote wound healing of burn.

    Release date: Export PDF Favorites Scan
4 pages Previous 1 2 3 4 Next

Format

Content