west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "end-to-end model" 1 results
  • Lightweight end-to-end model-based korotkoff sounds phase identification and blood pressure measurement

    Objective To propose a lightweight end-to-end neural network model for automated Korotkoff sound phase recognition and subsequent blood pressure (BP) measurement, aiming to improve measurement accuracy and population adaptability. Methods We developed a streamlined architecture integrating depthwise separable convolution (DSConv), multi-head attention (MHA), and bidirectional gated recurrent unit (BiGRU). The model directly processes Korotkoff sound time-series signals to identify auscultatory phases. Systolic BP (SBP) and diastolic BP (DBP) were determined using Phase Ⅰ and PhaseⅤdetections, respectively. Given the clinical relevance of phase Ⅳ for specific populations (e.g., children and pregnant women, denoted as DBPIV), BP values from this phase were also recorded. Results The study enrolled 106 volunteers with 70 males, 36 females at mean age of (40.0±12.0) years. The model achieved 94.25% phase recognition accuracy. Measurement errors were (0.1±2.5) mm Hg (SBP), (0.9±3.4) mm Hg (DBPIV), and (0.8±2.6) mm Hg (DBP). Conclusion Our method enables precise phase recognition and BP measurement, demonstrating potential for developing population-adaptive blood pressure monitoring systems.

    Release date: Export PDF Favorites Scan
1 pages Previous 1 Next

Format

Content