Objective To study the biological behavior of osteoblast and vascular endothelial cell culture. Methods The osteoblasts and vascular endothelial cells were obtained from calvarial bone and renal cortox of 2-week rabbits respectively. The experiment were divided into group A (osteoblasts), group B (vascular endothelial cells) and group C(co-cultured osteoblasts and vascular endothelial cells). The cells were identified with cytoimmunochemical staining. The cellular biological behavior and compatibilitywere observed under inverted phase contrast microscope and with histological staining. The cells viability and alkaline phosphatase(ALP) activity were measured. Results The cytoimmunochemical staining showed that the cultured cells were osteoblasts and vascular endothelial cells .The cellular compatibility of osteoblasts and vascular endothelial cells was good. The ALP activity was higher in group C than in group A and group B(P<0.01), and it was higher in group A than in group B(P<0.05). In group C, the cellproliferation were increased slowly early, but fast later. Conclusion Thecellular compatibility of osteoblasts and vascular endothelial cells were good. The vascular endothelial cells can significantly increased the osteoblast viability and ALP activity,and the combined cultured cells have greater proliferation ability.
Objective To establish a simple and efficient method to isolate and culture the umbilical vein vascular endothelial cells in canine. Methods Twelve umbilical cords [(13.0 ± 1.5) cm in length] were taken from 12 newborn pups of Beagles. And then the vascular endothelial cells were isolated from these umbilical cords digested by 1% collagenase type I for 5, 7, and 10 minutes respectively (4 umbilical cords in each group). After cultured, the vascular endothelial cells were identified by morphology, immunofluorescence, and flow cytometry. And the growth curvature of umbilical vein vascular endothelial cells was detected by MTT assay. Results Few vascular endothelial cells were collected at 5 and 10 minutes after digestion; many vascular endothelial cells were seen at 7 minutes, and became cobblestone with culture time, with a large nucleus; after passage, cell morphology had no obvious change. Fluorescence microscope results showed that positive von Willebrand factor (vWF) and CD31 cells were observed in most of cells. The flow cytometry test displayed that the positive cell rates of vWF and CD31 were 99.0% ± 0.7% and 98.0% ± 1.2%, respectively. The above results indicated that cultured cells were vascular endothelial cells. MTT assay showed that vascular endothelial cells proliferation increased significantly with culture time. Conclusion Enzyme digestion is a convenient method to isolate vascular endothelial cells from canine umbilical vein, and a large number of cells and high purity of cells can be obtained by the method.
ObjectiveTo explore the effect of Kaempferol on bone microvascular endothelial cells (BMECs) in glucocorticoid induced osteonecrosis of the femoral head (GIONFH) in vitro. MethodsBMECs were isolated from cancellous bone of femoral head or femoral neck donated voluntarily by patients with femoral neck fracture. BMECs were identified by von Willebrand factor and CD31 immunofluorescence staining and tube formation assay. The cell counting kit 8 (CCK-8) assay was used to screen the optimal concentration and the time point of dexamethasone (Dex) to inhibit the cell activity and the optimal concentration of Kaempferol to improve the inhibition of Dex. Then the BMECs were divided into 4 groups, namely, the cell group (group A), the cells treated with optimal concentration of Dex group (group B), the cells treated with optimal concentration of Dex+1 μmol/L Kaempferol group (group C), and the cells treated with optimal concentration of Dex+5 μmol/L Kaempferol group (group D). EdU assay, in vitro tube formation assay, TUNEL staining assay, Annexin Ⅴ/propidium iodide (PI) staining assay, Transwell migration assay, scratch healing assay, and Western blot assay were used to detect the effect of Kaempferol on the proliferation, tube formation, apoptosis, migration, and protein expression of BMECs treated with Dex. ResultsThe cultured cells were identified as BMECs. CCK-8 assay showed that the optimal concentration and the time point of Dex to inhibit cell activity was 300 μmol/L for 24 hours, and the optimal concentration of Kaempferol to improve the inhibitory activity of Dex was 1 μmol/L. EdU and tube formation assays showed that the cell proliferation rate, tube length, and number of branch points were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). TUNEL and Annexin V/PI staining assays showed that the rates of TUNEL positive cells and apoptotic cells were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Scratch healing assay and Transwell migration assay showed that the scratch healing rate and the number of migration cells were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Western blot assay demonstrated that the relative expressions of Cleaved Caspase-3 and Bax proteins were significantly higher in groups B-D than in group A, and in groups B and D than in group C (P<0.05); the relative expressions of matrix metalloproteinase 2, Cyclin D1, Cyclin E1, VEGFA, and Bcl2 proteins were significantly lower in groups B-D than in group A, and in groups B and D than in group C (P<0.05). Conclusion Kaempferol can alleviate the damage and dysfunction of BMECs in GIONFH.
Objective To explore the effect of natural hirudin on proliferation of human microvascular endothelial cells (HMVECs) and its preliminary mechanism of promoting angiogenesis. Methods Three-dimensional culture models of HMVECs were established in vitro and observed by inverted phase contrast microscopy after 24 hours of culturing. Then, the three-dimensional culture models of HMVECs were treated with different concentrations (1, 4, and 7 ATU/mL) of the natural hirudin, respectively, and Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum as control. The cell proliferations of 4 groups were detected by cell counting kit 8 (CCK-8) method at 24, 48, and 72 hours; the angiogenesis of 4 groups were observed by tube formation assay at 24 hours; the expressions of vascular endothelial growth factor (VEGF) and Notch1 of HMVECs in 4 groups were observed by immunofluorescence staining at 24 hours. Results The observation of cells in three-dimensional culture models showed that HMVECs attached to Matrigel well, and the cells formed tube structure completely after 24 hours. The results of CCK-8 test showed that the absorbance (A) value of 1 and 4 ATU/mL groups were higher than that of control group at each time point (P<0.05), andA value of 4 ATU/mL group was the highest. The A value of 7 ATU/mL group was significantly lower than those of 1 and 4 ATU/mL groups and control group (P<0.05). The tube formation assay showed that the tube structure was more in 1 and 4 ATU/mL groups than in 7 ATU/mL group and control group, and in 4 ATU/mL group than in 1 ATU/mL group, showing significant differences (P<0.05). There was no significant difference between 7 ATU/mL group and control group (P>0.05). The results of immunofluorescence staining showed that compared with control group, the Notch1 expression was higher in 1 and 4 ATU/mL groups and lower in 7 ATU/mL group; and there was significant difference between 4 and 7 ATU/mL groups and control group (P<0.05). The VEGF expression was higher in 1, 4, and 7 ATU/mL groups than in control group, in 4 ATU/mL group than in 1 and 7 ATU/mL groups, showing significant differences (P<0.05). Conclusion Natural hirudin can promote angiogenesis at low and medium concentrations, but suppress angiogenesis at high concentrations. Its mechanism may be related to the VEGF-Notch signal pathway.
Objective To explore the effects of adipose-derived stem cell released exosomes (ADSC-Exos) on the proliferation, migration, and tube-like differentiation of human umbilical vein endothelial cells (HUVECs). Methods Adipose tissue voluntarily donated by liposuction patients was obtained. The ADSCs were harvested by enzyme digestion and identified by flow cytometry and adipogenic induction. The ADSC-Exos were extracted from the supernatant of the 3rd generation ADSCs and the morphology was observed by transmission electron microscopy. The surface proteins (Alix and CD63) were detected by Western blot. The nanoparticle tracking analyzer NanoSight was used to analyze the size distribution of ADSC-Exos. After co-culture of PKH26 fluorescently labeled ADSC-Exos with HUVECs, confocal microscopy had been used to observe whether ADSC-Exos could absorbed by HUVECs. ADSC-Exos and HUVECs were co-cultured for 1, 2, 3, 4, and 5 days. The effect of ADSC-Exos on the proliferation of HUVECs was detected by cell counting kit 8 (CCK-8) assay. The expression of VEGF protein in the supernatant of HUVECs with or without ADSC-Exos had been detected by ELISA after 12 hours. Transwell migration assay was used to detect the effect of ADSC-Exos on the migration ability of HUVECs. The effect of ADSC-Exos on the tubular structure formation of HUVECs was observed by Matrigel experiments in vitro. The formation of subcutaneous tubular structure in vivo was observed in BALB/c male nude mice via the injection of HUVECs and Matrigel with or without ADSC-Exos. After 2 weeks, the neovascularization in Matrigel was measured and mean blood vessel density (MVD) was calculated. The above experiments were all controlled by the same amount of PBS. Results After identification, the cultured cells were consistent with the characteristics of ADSCs. ADSC-Exos were circular or elliptical membranous vesicle with uniform morphology under transmission electron microscopy, and expresses the signature proteins Alix and CD63 with particle size ranging from 30 to 200 nm. Confocal microscopy results showed that ADSC-Exos could be absorbed by HUVECs. The CCK-8 analysis showed that the cell proliferation of the experimental group was better than that of the control group at each time point (P<0.05). The result of Transwell showed that the trans-membrane migration cells in the experimental group were significantly more than that in the control group (t=9.534, P=0.000). In vitro, Matrigel tube-forming experiment showed that the number of tube-like structures in the experimental group was significantly higher than that of the control group (t=15.910, P=0.000). In vivo, the MVD of the experimental group was significantly higher than that of the control group (t=16.710, P=0.000). The ELISA assay showed that the expression of VEGF protein in the supernatant of the experimental group was significantly higher than that of the control group (t=21.470, P=0.000). Conclusion ADSC-Exos can promote proliferation, migration, and tube-like structure formation of HUVECs, suggesting that ADSC-Exos can promote angiogenesisin vitro and in vivo.
ObjectiveTo investigate the mechanism of G protein coupled receptor kinase interacting protein 1 (GIT1) affecting angiogenesis by comparing the differentiation of bone marrow mesenchymal stem cells (BMSCs) differentiated into endothelial cells between GIT1 wild type mice and GIT1 gene knockout mice.MethodsMale and female GIT1 heterozygous mice were paired breeding, and the genotypic identification of newborn mice were detected by PCR. The 2nd generation BMSCs isolated from GIT1 wild type mice or GIT1 gene knockout mice were divided into 4 groups, including wild type control group (group A), wild type experimental group (group A1), GIT1 knockout control group (group B), and GIT1 knockout experimental group (group B1). The cells of groups A1 and B1 were cultured with the endothelial induction medium and the cells of groups A and B with normal cluture medium. The expressions of vascular endothelial growth factor receptor 2 (VEGFR-2), VEGFR-3, and phospho-VEGFR-2 (pVEGFR-2), and pVEGFR-3 proteins were detected by Western blot. The endothelial cell markers [von Willebrand factor (vWF), platelet-endothelial cell adhesion molecule 1 (PECAM-1), and vascular endothelial cadherin (VE-Cadherin)] were detected by flow cytometry. The 2nd generation BMSCs of GIT1 wild type mice were divided into 4 groups according to the different culture media: group Ⅰ, primary cell culture medium; group Ⅱ, cell culture medium containing SAR131675 (VEGFR-3 blocker); group Ⅲ, endothelial induction medium; group Ⅳ, endothelial induction medium containing SAR131675. The endothelial cell markers (vWF, PECAM-1, and VE-Cadherin) in 4 groups were also detected by flow cytometry.ResultsWestern blot results showed that there was no obviously difference in protein expressions of VEGFR-2 and pVEGFR-2 between groups; and the expressions of VEGFR-3 and pVEGFR-3 proteins in group A1 were obviously higher than those in groups A, B, and B1. The flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group A1 than in groups A, B, and B1 (P<0.05), and in group B1 than in groups A and B (P<0.05); but no significant difference was found between groups A and B (P>0.05). In the VEGFR-3 blocked experiment, the flow cytometry results showed that the expressions of vWF, PECAM-1, and VE-Cadherin were significantly higher in group Ⅲ than in groupsⅠ, Ⅱ, and Ⅳ, and in group Ⅳ than in groups Ⅰ and Ⅱ (P<0.05); but no significant difference was found between groups Ⅰ and Ⅱ (P>0.05).ConclusionGIT1 mediates BMSCs of mice differentiation into endothelial cells via VEGFR-3, thereby affecting the angiogenesis.
Objective To observe the effect of metformin (Met) on inflammatory bodies and focal death in human retinal microvascular endothelial cells (hRMEC) in diabetes mellitus (DM) microenvironment. MethodsExperimental research was divided into in vivo animal experiment and in vitro cell experiment. In vivo animal experiments: 9 healthy C57BL/6J male mice were randomly divided into DM group, normal control group, and DM+Met group, with 3 mice in each group. DM group and DM+Met group mice were induced by streptozotocin to establish DM model, and DM+Met group was given Met 400 mg/ (kg · d) intervention. Eight weeks after modeling, the expression of NLRP3, cleaved-membrane perforating protein D (GSDMD) and cleaved-Caspase-1 in the retina of mice in the normal control group, DM group and DM+Met group were observed by immunohistochemical staining. In vitro cell experiments: hRMEC was divided into conventional culture cell group (N group), advanced glycation end products (AGE) group, and AGE+Met group. Joining the AGE, AGE+Met groups cells were induced by 150 μg/ml of glycation end products, and 2.0 mmol/L Met was added to the AGE+Met group. Pyroptosis was detected by flow cytometry; 2',7'-dichlorofluorescein diacetate (DCFH-DA) fluorescent probe was used to detect the expression of reactive oxygen species (ROS) in cells of each group. Real-time fluorescence quantitative polymerase chain reaction and Western blot were used to detect the relative mRNA and protein expression levels of NLRP3, cleaved-GSDMD, cleaved-Caspase-1 in each group of cells. Single factor analysis of variance was used for comparison among the three groups. ResultsIn vivo animal experiments: compared with the DM group, the expression of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in the retina of normal control group and DM+Met group mice was significantly reduced, with significant difference among the 3 groups (F=43.478, 36.643, 24.464; P<0.01). In vitro cell experiment and flow cytometry showed that the pyroptosis rate of AGE group was significantly higher than that of N group and AGE+Met group (F=32.598, P<0.01). The DCFH-DA detection results showed that the intracellular ROS levels in the N group and AGE+Met group were significantly lower than those in the AGE group, with the significant difference (F=47.267, P<0.01). The mRNA (F=51.563, 32.192, 44.473; P<0.01) and protein levels (F=63.372, 54.463, 48.412; P<0.01) of NLRP3, cleaved-GSDMD, and cleaved-Caspase-1 in hRMEC of the AGE+Met group were significantly reduced compared to the N group. ConclusionMet can down regulate the expression of NLRP3 inflammatory body related factors in hRMEC and inhibit pyroptosis.
ObjectiveTo investigate whether exosomes derived from miR-27a-overexpressing human umbilical vein endothelial cells (HUVECs)—exo (miR-27a) can promote bone regeneration and improve glucocorticoids (GC) induced osteonecrosis of femoral head (ONFH) (GC-ONFH).MethodsThe exo (miR-27a) were intended to be constructed and identified by transmission electron microscopy, nanoparticle tracking analysis, Western blot, and real-time fluorescent quantitative PCR (qRT-PCR). qRT-PCR was used to evaluate the effect of exo (miR-27a) in delivering miR-27a to osteoblasts (MC3T3-E1 cells). Alkaline phosphatase staining, alizarin red staining, and qRT-PCR were used to evaluate its effect on MC3T3-E1 cells osteogenesis. Dual-luciferase reporter (DLRTM) assay was used to verify whether miR-27a targeting Dickkopf WNT signaling pathway inhibitor 2 (DKK2) was a potential mechanism, and the mechanism was further verified by qRT-PCR, Western blot, and alizarin red staining in MC3T3-E1 cells. Finally, the protective effect of exo (miR-27a) on ONFH was verified by the GC-ONFH model in Sprague Dawley (SD) rats.ResultsTransmission electron microscopy, nanoparticle tracking analysis, Western blot, and qRT-PCR detection showed that exo (miR-27a) was successfully constructed. exo (miR-27a) could effectively deliver miR-27a to MC3T3-E1 cells and enhance their osteogenic capacity. The detection of DLRTM showed that miR-27a promoted bone formation by directly targeting DDK2. Micro-CT and HE staining results of animal experiments showed that tail vein injection of exo (miR-27a) improved the osteonecrosis of SD rat GC-ONFH model.Conclusionexo (miR-27a) can promote bone regeneration and protect against GC-ONFH to some extent.
ObjectiveTo review the research progress on the role and mechanism of matrix stiffness in regulating endothelial cell sprouting. MethodsThe related literature at home and abroad in recent years was extensively reviewed, and the behaviors of matrix stiffness related endothelial cell sprouting in different cell cultivation conditions were analyzed, and the specific molecular mechanism of matrix stiffness regulating related signal pathways in endothelial cell sprouting was elaborated. Results In two-dimensional cell cultivation condition, increase of matrix stiffness stimulates endothelial cell sprouting within a certain range. However, in three-dimensional cell cultivation condition, the detailed function of matrix stiffness in regulating endothelial cell sprouting and angiogenesis are still unclear. At present, the research of the related molecular mechanism mainly focuses on YAP/TAZ, and roles of its upstream and downstream signal molecules. Matrix stiffness can regulate endothelial cell sprouting by activating or inhibiting signal pathways to participate in vascularization. ConclusionMatrix stiffness plays a vital role in regulating endothelial cell sprouting, but its specific role and molecular mechanism in different environments remain ambiguous and need further study.
Immuno-fluorescence technique can qualitatively determine certain nuclear translocation, of which NF-κB/p65 implicates the activation of NF-κB signal pathways. Immuno-fluorescence analysis software with independent property rights is able to quantitatively analyze dynamic location of NF-κB/p65 by computing relative fluorescence units in nuclei and cytoplasm. We verified the quantitative analysis by Western Blot. When we applied the software to analysis of nuclear translocation in lipopolysaccharide (LPS) induced (0.5 h, 1 h, 2 h, 4 h) primary human umbilical vein endothelial cells (HUVECs), we found that nuclear translocation peak showed up at 2h as with calculated Western blot verification results, indicating that the inventive immuno-fluorescence analysis software can be applied to the quantitative analysis of immuno-fluorescence.