Objective To explore the effects of intravenous treprostinil in different doses on the hemodynamics and postoperative outcomes after high-risk total cavo-pulmonary connection (TCPC). MethodsFrom 2018 to 2021, among 189 patients who underwent TCPC in the Department of Pediatric Cardiac Surgery of Fuwai Hospital, 26 high-risk patients who received the intravenous treprostinil therapy were retrospectively analyzed. There were 12 males and 14 females, with an age of 4 (3, 6) years and a weight of 17.6±6.2 kg. The patients were divided into two groups: a high-dose group [15 patients, maintaining dose>10 ng/(kg·min)] and a low-dose group [11 patients, maintaining dose≤10 ng/(kg·min)]. The hemodynamics before treprostinil using and during the first 24 hours after reaching the maintaining dose of treprostinil, and postoperative outcomes of the two groups were investigated. ResultsThe incidence of heterotaxia was higher in the high-dose group (66.7% vs. 18.2%, P=0.021). During the observation period, the mean pulmonary artery pressure decreased from 11.9±3.6 mm Hg to 11.0±3.3 mm Hg in the low-dose group (P=0.013), and from 12.9±4.7 mm Hg to 10.2±3.4 mm Hg in the high-dose group (P=0.001). The decreasing effect in the high-dose group was better than that in the low-dose group (P=0.010). There was no statistical difference in the postoperative outcomes between the two groups (P>0.05). In terms of side effects, patients needed temporarily increased dosage of vasoactive drugs to maintain stable blood pressure during 6-12 h after treprostinil therapy in the high-dose group. ConclusionIn patients after high-risk TCPC, intravenous high-dose treprostinil has a better therapeutic effect on reducing pulmonary artery pressure. However, it should be noted that increased dosage of vasoactive agents may be required to maintain blood pressure stability in patients with high-dose treprostinil.
This study analyzed the inherent relation between arterial blood mass flow and muscle atrophy of residual limb to provide some necessary information and theoretical support for the clinical rehabilitation of lower limb amputees. Three-dimensional arterial model reconstruction was performed on both intact side and residual limb of a unilateral transfemoral amputee who is the subject. Then hemodynamic calculation was carried out to comparatively analyze the mass flow state at each arterial outlet of both lower extremities. The muscle atrophy ratio of residual limb was calculated by measuring the cross-sectional area of bilateral muscles. Based on the blood supply relationship, the correlation between arterial blood flow reduction ratio and muscle atrophy ratio was discussed. The results showed that the mass flow of superficial femoral arteries and lateral circumflex femoral arteries severely reduced. Meanwhile rectus femoris, vastus lateralis and vastus medialis which were fed by these arteries showed great atrophy too. On the contrary, the mass flow of deep femoral arteries and medial femoral circumflex arteries slightly reduced. Meanwhile gracilis, adductor longus, long head of biceps which were fed by these arteries showed mild atrophy too. These results indicated that there might be a positive and promotion correlation between the muscle atrophy ratio and the blood mass flow reduction ratio of residual limb during rehabilitation.
Objective To study the hemodynamic characteristics of concealed perforator flap in mini-pigs by ultrasonic Doppler technique. Methods Seven 7-month-old mini-pigs, weighing 20-25 kg, were included in the study. The saphenous artery perforator flap (group A, n=4), saphenous artery concealed perforator flap (group B, n=5), and saphenous artery concealed perforator flap combined with sarcolemma (group C, n=5) models were established randomly on both hind limbs of pigs. The pigs and flap survival conditions were observed after operation. The percentage of flap survival area was calculated by Photoshop CS5 software at 5 days after operation. Ultrasonic Doppler technique was performed on the flaps before operation and at immediate, 3 days, and 5 days after operation to record the hemodynamic changes of the flaps. The hemodynamic indicators of saphenous artery (inner diameter, peak systoli velocity, resistance index, and blood flow) and saphenous vein (inner diameter, maximum velocity, and blood flow) were recorded. Results At 1 day after operation, 1 pig died of infection, and the rest survived until the experiment was completed. Finally, the 3 flaps of group A, 4 of group B, and 5 of group C were included in the study. The flaps of the 3 groups all showed swelling after operation, which was most significant at 3 days. At 3 days after operation, the flaps in group B showed partial bruising and necrosis. At 5 days after operation, the flaps in groups A and C were basically alive, and the necrosis area of flap in group B increased further. The percentage of flap survival area in groups A, B, and C were 99.7%±0.5%, 74.8%±26.4%, and 100%, respectively. The percentage of flap was significantly lower in group B than in groups A and C (P<0.05). There was no significant difference between groups A and C (P>0.05). There were significant differences in the hemodynamic indicators of saphenous artery and vein between different time points in 3 groups (P<0.05). There was no significant difference in each indicator between groups at each time point (P>0.05). Conclusion Both the saphenous artery concealed perforator flap and the flap combined with sarcolemma have stable blood flow, but the survival area of the latter was better than the former.
This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.
Vena cava filter is a filter device designed to prevent pulmonary embolism caused by thrombus detached from lower limbs and pelvis. A new retrievable vena cava filter was designed in this study. To evaluate hemodynamic performance and thrombus capture efficiency after transplanting vena cava filter, numerical simulation of computational fluid dynamics was used to simulate hemodynamics and compare it with the commercialized Denali and Aegisy filters, and in vitro experimental test was performed to compare the thrombus capture effect. In this paper, the two-phase flow model of computational fluid dynamics software was used to analyze the outlet blood flow velocity, inlet-outlet pressure difference, wall shear stress on the wall of the filter, the area ratio of the high and low wall shear stress area and thrombus capture efficiency when the thrombus diameter was 5 mm, 10 mm, 15 mm and thrombus content was 10%, 20%, 30%, respectively. Meanwhile, the thrombus capture effects of the above three filters were also compared and evaluated by in vitro experimental data. The results showed that the Denali filter has minimal interference to blood flow after implantation, but has the worst capture effect on 5 mm small diameter thrombus; the Aegisy filter has the best effect on the trapping of thrombus with different diameters and concentrations, but the low wall shear stress area ratio is the largest; the new filter designed in this study has a good filtering and capture efficiency on small-diameter thrombus, and the area ratio of low wall shear stress which is prone to thrombosis is small. The low wall shear stress area of the Denali and Aegisy filters is relatively large, and the risk of thrombosis is high. Based on the above results, it is expected that the new vena cava filter designed in this paper can provide a reference for the design and clinical selection of new filters.
Surgical intervention for chronic thoracoabdominal aortic dissecting aneurysms (cTAADA) is regarded as one of the most challenging procedures in the field of vascular surgery. For nearly six decades, open repair predominantly utilizing prosthetic grafts has been the treatment of choice for cTAADA. With advances in minimally invasive endovascular technologies, two novel surgical approaches have emerged: total endovascular stent-graft repair and hybrid procedures combining retrograde debranching of visceral arteries with endovascular stent-graft repair (abbreviated as hybrid procedure). Although total endovascular stent-graft repair offers reduced trauma and quicker recovery, limitations persist in clinical application due to hostile anatomical requirements of the aorta, high costs, and the lack of universally available stent-graft products. Hybrid repair, integrating the minimally invasive ethos of endovascular repair with visceral artery debranching techniques, has increasingly become a significant surgical modality for managing thoracoabdominal aneurysms, especially in cases unsuitable for open surgery or total endovascular treatment due to anatomical constraints such as aortic tortuosity or narrow true lumens in dissections. Recent enhancements in hybrid surgical approaches include ongoing optimization of visceral artery reconstruction strategies based on hemodynamic analyses, and exploration of the comparative benefits of staged versus concurrent surgical interventions.
Objective To investigate the correlation of intracranial arachnoid cyst (IAC) with epilepsy and the possible mechanism of seizure induced by IAC. Methods Patients with IAC, who were treated in West China Hospital of Sichuan University between January 2009 and January 2019, were included and divided into IAC with epilepsy group and IAC without epilepsy group according to whether they were diagnosed with epilepsy. We collected the IAC location information of all subjects after the establishment of a three-dimensional spatial coordinate system of MRI images. Computational fluid dynamics technology was used to establish a blood vessel model in cyst area and perform hemodynamic analysis basing on contrast-enhanced CT images. Results A total of 72 patients were enrolled, including 24 in the IAC with epilepsy group and 48 in the IAC without epilepsy group. There was no significant difference between the two groups in terms of sex, age, IAC location, the volumes or the maximum diameters of IAC (P>0.05). Consecutive areas formed by the seven high-risk areas found in the IAC with epilepsy group were located in the temporal area. The seven high-risk areas were simultaneous IAC location in 5 patients in the IAC with epilepsy group and in 1 patient in the IAC without epilepsy group, and the difference was statistically significant (χ2=5.114, P=0.024). Comparison of the hemodynamic parameters between the two types of vascular models revealed similar pressure changes and blood pressure parameters, with lower blood flow and higher mean vascular wall shear stress in the IAC with epilepsy group. Conclusions IAC may cause epilepsy by increasing adjacent blood vessel stenosis and blood vessel wall shear stress through cyst space-occupying effect. The most common location of IAC with epilepsy is the temporal area. The occupying effect of IAC should be considered in the location of epileptogenic foci before surgery for IAC patients with epilepsy.
Computational fluid dynamics was used to investigate the effect of the pathogenesis of membranous obstruction of inferior vena cava of Budd-Chiari syndrome with various angles between right hepatic vein and inferior vena cava. Mimics software was used to reconstruct the models from magnetic resonance imaging (MRI) angiograms of inferior vena cava, right hepatic vein, middle hepatic vein and left hepatic vein, and 3DMAX was used to construct the models of 30°, 60°, 90° and 120° angles between right hepatic vein and inferior vena cava, which was based on the reconstructed models.The model was conducted with clinical parameters in terms of wall shear stress distribution, static pressure distribution and blood velocity. The results demonstrated that the differences between wall shear stress and static pressure had statistical significance with various angles between right hepatic vein and inferior vena cava by SPSS. The pathogenesis of membranous obstruction of inferior vena cava had a correlation with the angles between right hepatic vein and inferior vena cava.
Hematopoietic stem cells (HSCs) are tissue specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Recently, people have learned a lot about the embryonic HSCs on their development and homing. During their differentiation, HSCs are regulated by the transcription factors, such as Runx1 and Notch signaling pathway, etc. MicroRNAs also regulate the self-renewal and differentiation of hematopoietic stem/progenitor cells on the post-transcriptional levels. Since the onset of circulation, the formation of HSCs and their differentiation into blood cells, especially red blood cells, are regulated by the hemodynamic forces. It would be of great significance if we could treat hematologic diseases with induced HSCs in vitro on the basis of fully understanding of hemotopoietic stem cell development. This review is focused on the advances in the research of HSCs' development and regulation.
Objective To explore the hemodynamic assessment after radical surgery in children with tetralogy of Fallot (TOF) by both echocardiography and Mostcare monitor. Methods Clinical data of 63 children with TOF who underwent radical surgery in our hospital from February 2016 to June 2018 were retrospectively analyzed, including 34 males and 29 females, aged 6-24 (9.82±5.77) months. There were 19 patients undergoing transannular patch reconstruction of the right ventricular outflow tract (a transannular patch group) while 44 patients retained the pulmonary valve annulus (a non-transannular patch group) . The echocardiography and Mostcare monitor parameters were recorded and brain natriuretic peptide was tested at the time points of 0, 8, 12, 24 and 48 hours after operation (T 0, T 1, T 2, T 4) to analyze their correlations and the change trend at different time points after radical surgery. Results The left ventricular ejection fraction at T 1 (43.49%±3.82%) was lower than that at T 0 (48.29%±4.55%), T 2 (45.83%±3.69%), T 3 (53.76%±4.43%) and T 4 (60.54%±3.23%, P<0.05). The cardiac index at T 1 (1.85±0.35 L·min−1·m−2) was lower than that at T 0 (2.11±0.38 L·min−1·m−2), T 2 (2.07±0.36 L·min−1·m−2), T 3 (2.42±0.37 L·min−1·m−2) and T 4 (2.82±0.42 L·min−1·m−2, P<0.05). The cardiac circulation efficiency at T1 (0.19±0.05) was lower than that at T 0 (0.22±0.06), T 2 (0.22±0.05), T 3 (0.28±0.06) and T 4 (0.34±0.06, P<0.05). The right ventricular two-chambers view fraction area change at T 1 (23.17%±3.11%) was lower than that at T 0 (25.81%±3.74%), T 2 (25.38%±3.43%), T 3 (30.60%±4.50%) and T 4 (36.94%±5.85%, P<0.05). The pulse pressure variability was the highest at T 0 (18.76%±3.58%), followed by T 1 (14.81%±3.32%), T 2 (12.44%±2.94%), T 3 (10.39%±2.96%) and T 4 (9.18%±1.92%, P<0.05). The blood brain natriuretic peptide was higher at T 1 (846.67±362.95 pg/ml) than that at T 0 (42.60±18.06 pg/ml), T 2 (730.95±351.09 pg/ml), T 3 (510.98±290.39 pg/ml) and T 4 (364.41±243.56 pg/ml, P<0.05). There was no significant difference in left ventricular ejection fraction, cardiac circulation efficiency and heart index between the two groups (P>0.05). The right ventricular two-chambers view fraction area change of the transannular patch group was significantly lower than that of the non-transannular patch group at each time point (P<0.05). The blood brain natriuretic peptide and pulse pressure variability of the transannular patch group were significantly higher than those of the non-transannular patch group (P<0.05). Left ventricular ejection fraction was positively correlated with cardiac index (r=0.637, P=0.001) and cardiac circulation efficiency (r=0.462, P=0.001) while was significantly negatively correlated with blood brain natriuretic peptide (r=–0.419, P=0.001). Conclusion Both methods can accurately reflect the state of cardiac function. Mostcare monitor has a good consistency with echocardiography. Using transannular patch to recontribute right ventricular outflow tract in operation has more influence on right ventricular systolic function. The Mostcare monitor can guide the hemodynamic management after surgery in real time, continuously and accurately.