Objective To determine the incidence of vitamin B1 deficiency in critically ill patients, to compare vitamin B1 levels between septic and non-septic patients, and to explore the relationship between vitamin B1 levels and lactate levels. Methods Using a retrospective study method, critically ill patients admitted to the Department of Intensive Care of Nanjing Drum Tower Hospital from February 2022 to November 2022 were included in the study, and the patients were divided into sepsis and non-sepsis groups according to the admission diagnosis, and the differences in the vitamin B1 levels of the patients between the two groups were analyzed, as well as the correlation between the vitamin B1 levels and the lactic acid levels. Results There was a significant difference in serum vitamin B1 levels between the sepsis patients and the non-sepsis patients [(1.6±0.3)ng/mL vs. (2.1±0.2)ng/mL, P=0. 009]. For all patients, there was no correlation between vitamin B1 levels and lactate levels. But when the patient was in a hyperlactate state (lactate level ≥2 mmol/L), vitamin B1 levels were significantly negatively correlated with lactate levels (r=–0. 229, P=0. 004). Conclusions Vitamin B1 deficiency is prevalent in critically ill patients and is strongly correlated with whether or not the patient is septic. Vitamin B1 levels are significantly and negatively correlated with lactate levels when the patient's lactate level is ≥2 mmol/L.
Objective To prepare a self-made compound, hemostatic jelly with polylactic acid(PLA), which has the hemostatic and absorbable effect on injured cancellous bone. Methods Two bone defects of 5 mm in diameter and 4 mm in depth were subjected on 20 health rabbits by drilling through their either outside plate of the iliac, and were filled with hemostatic jelly(group A), bone wax(group B) and blank(group C) respectively. Hemostasis were observed and recorded after 1 and 10 minutes. Five specimens were harvested at 2, 4, 8 and 12 weeks postoperatively for histological observation. Results ① Hemostatic effect: Bleeding of injured spongy bone stopped within 10 minutes after the treatment of hemostatic jelly and bone wax, but bleeding of balnk did not stop. Hemostatic jelly and bone wax adhered to bone defects firmly within 10 minutes was after the treatment. ② Absorbable effect: Hemostatic jelly and bone defects have not changed visibly in the first 2 weeks. With histological observation 4 to 8 weeks after the operation, hemastatic jelly was absorbed gradually and replaced by osteogenous tissue. It was absorbed completely after 8 to 12 weeks. Bone wax was not absorbed after 12 weeks, no new bone tissue was observed at bone wax area. The blank was replaced by connective tissue and osteogenous tissue partially after 12 weeks. Conclusion The compound hemostatic jelly manifests both hemostatic and absorbable effects on injured cancellous bone and may substitute for bone wax in clinical application.
Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.
Objective To investigate the feasibility of fetal liver cells for liver tissue engineering, the supporting function of poly L lactic acid (PLLA) scaffold for fetal liver cells and the effects of oncostatin M (OSM), nicotinamide (NA) and dimethyl sulfoxide(DMSO) on growth and hepatic differentiation. Methods After three dimensional PLLA scaffolds having a porous structure were prepared by using NH 4HCO 3 particle, fetal liver cells obtained from E14.5 C57BL/6CrSlc murine embryos were inoculated in the scaffolds. Cells were cultured in Williams’E medium with or without OSM, NA and DMSO for 30 days. Changes in cell number, liver-specific function, and cellular morphology were observed. Results When compared with in monolayer culture, cell number and albumin secretion increased obviously in three-dimensional PLLA. Alburmin secretion increased slightly in OSM group of monolayer culture, but increased obviously in OSM groupo of PLLA culture and in OSM/NA/DMSO group of both monlayer and PLLA cultures. Conclusion The three-dimensional PLLA scaffold is a good supporting material for the cultivation of tetal liver cells. OSM, NA and DMSO remarkaly stimulated maturation of hepatic parenchymal cells in vitro in terms of morphology and liver-specific function.
In order to find an ideal biological material to prevent peridural adhesion following laminectomy, 30 rabbits were used as animal model, in each of which 2 defects with a size of 1 cm x 0.5 cm were made following laminectomy of L3, L5 spine. One of the defects was covered extradurally with chitosan, gelatin foam or PLA membrane respectively, while the other defect was exposed as control. All of these animals were sacrificed on the 2nd, 4th, 6th, 8th and 10th week after operation, and the extradural fibrosis and adhesion of every animal were evaluated by gross observation and histological examinations. It was revealed that in the chitosan and PLA membrane groups, the extradural tissue was smooth without thickening and there was no fibrous proliferation or adhesion in the epidural cavity, and that in the chitosan group, the growth of fibroblast was restrained but the growth of the epithelial cells was promoted significantly, thus, wound healing was rapid. In the control group and gelatin foam group, obvious extradural fibrosis and adhesion were observed and the extradural space had almost disappeared. Therefore, it was concluded that the biodegradable PLA membrane and chitosan were both an ideal material in the prevention of postoperative epidural adhesion.
Objective To fabricate a novel porous bioactivecomposite biomaterial consisting of poly lactic acid (PLA)bone matrix gelatin(BMG) by using the supercritical carbon dioxide fluid technique (SC-CO2) and to evaluate its osteoinductive activity. Methods The cortical bones selected from healthy adult donors were processed into BMG by the defatting, demineralizing, and deproteinizing processes. PLA and BMG were mixed at a volume radio of 3∶1; then, the PLA-BMG mixed material and the pure PLA material were respectively placed in the supercritical carbon dioxide reaction kettles, and were respectively added by the NaCl particles 100200 μm in diameter for theporosity of the materials so that the porous PLA-BMG composite material and the porous PLA composite material could be formed. The mouse osteoblastlike MC3T3-E1 cells were cultured in the dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum. Then, 20 μl of the MC3T3E1 cell suspensions containing 2 ×106 cells /ml were delivered into the culturing plate (24 wells/plate) made of the different materials, which were co-cultured for 2 weeks. In the PLA-BMG group, 100 μg of the crushed PLA-BMG material was contained in each well; in the PLA group, 100 μg of the crushed PLA material was containedin each well; and in the DMEM group, only DMEM was contained, which served as the control group. There were 6 wells in each group. The quantitative analysis onthe calcification area was performed by the staining of the alizarin red S. Theco-cultured cells were harvested and lysated in 1 ml of 0.2% Nonidet P-40 by the ultrasonic lysating technique. Then, the ALP activity and the Ca content were measured according to the illuminations of the reagent kits. Results The porous PLABMG composite material showed a good homological porosity with a pore diameter of 50-150 μm and a good connectivity between the pores. The ALP activity, the Ca content, and the calcification area were significantly greater in the PLABMG group than in the PLA group and the control group (325.59±70.40 U/gprot, 3.51±1.64 mmol/gprot, 42.98±4.44% vs. 63.62±30.01 U/gprot, 1.04±0.21 mmol/gprot, 9.55±1.94%, and 2.40±1.47 U/gprot, 0.70±0.24 mmol/gprot, 0.86±0.41%; Plt;0.05). Meanwhile, there was a statistically significant difference between the PLA group and the control group in the ALP activity and the calcification area (Plt;0.05). Conclusion The porous PLABMG composite material prepared by the use of SC-CO2 has a good steoinductive activity and can be used as a promising bone biomaterial and a bone tissue engineered scaffold.
摘要:目的:研究生物降解聚DL乳酸(PDLLA)自锁式捆绑带固定骨折的生物力学性能。方法:80只新西兰大白兔随机分为两组,建立股骨干非负重骨折动物模型,应用生物降解自锁式捆绑带固定骨折为实验组,钢丝固定骨折为对照组,分别于术后1、4、8、12周行生物力学检查进行比较。结果:捆绑带组在术后4、8、12周均比钢丝组的弯曲强度高,但4周、12周时Pgt;005,无统计学差异,8周时Plt;005,提示有统计学差异。离体同种固定物不同时间段抗拉强度自身比较:钢丝固定术后4阶段抗拉强度比较Pgt;005,任何两两比较都没有统计学差异,抗拉强度未随术后时间延长发生明显下降。捆绑带固定术后4周与术后1周比较Pgt;005,抗拉强度无明显降低,但术后8周和术后12周时Plt;005,抗拉强度明显下降。结论:生物降解自锁式捆绑带在非负重骨折治疗中可发挥良好的固定作用。生物降解自锁式捆绑带降解时,应力传导促进了骨折的愈合。Abstract: Objective: To study the biomechanics function of selflocking cerclage band made of biodegradable material polyDLlactic acid (PDLLA) in the fixation of fractures. Methods: Eighty rabbits were divided into two groups. Femur fracture models were made. Fractures were fixed using biodegradable selflocking cerclage band in experimental group and metal fixation material in control group. The biomechanics was analyzed and compared after 1, 4, 8 and 12 weeks respectively. Results: The bending strength of experimental group is more ber than that of control group after 4, 8 and 12 weeks, but it was not statistically significant at 4 and 12 weeks (Pgt;005). It was statistically significant at 8 weeks (Plt;005). The tensile strength of the same cerclage instrument was compared at different stage in vitro, and the result of the control group was not statistically significant at the four stage (〖WTBX〗P〖WTBZ〗gt;005). Regarding the changes of tensile strength of the cerclage instrument at different stage, the result of the experimental group was not statistically significant after 1 and 4 weeks (Pgt;005). However, the decrease of tensile strength was statistically significant after 8 and 12 weeks (Plt;005). Conculsion: Biodegradable selflocking cerclage band could be used in thetreatment of nonweightbearing fractures. The stress force conducting promotes healing of fracture when the selflocking biodegradable cerclage band degrades.
Objective To investigate the controlled release effect and the anti-cancer cell ability of a 5-FU loaded poly-L-lactic acid (PLLA) nanofibers membrane blending with keratin. Methods Making PLLA and keratin mix together and crosslinking to generate blending solution. Then the anti-cancer drug 5-FU was added into the solution to fabricate nanofibers membrane by high voltage electrospinning method. The micro morphology was observed by scanning electron microscope (SEM). The controlled release effect of 5-FU from the nanofibers membrane was measured by high performance liquid chromatography (HPLC). The cytotoxicity of 5-FU/PLLA keratin nanofibers membrane was evaluated by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay on HCT116 cell lines. At the meantime, cell growth morphology of HCT116 in experiment group were observed by microscope and transmission electron microscope. Results 5-FU could be dispersed homogeneous in the PLLA/keratin nanofibers membrane through SEM. HPLC suggested that 5-FU could be diffused out from the fibers slowly and uniformly, which corresponded the zero order kinetics basically. After different treatment, the longer time the 5-FU/PLLA keratin nanofibers (experiment group) immerse in the medium, the much more swelling, apoptosis, and necrocytosis of the cells were observed. The cell viability for experiment group was (47.5±2.8)% by MTT, while the PLLA keratin nanofibers without 5-FU had no significant impact on cell viability (93.9±2.8)%, which was statistic significance (P<0.01). Conclusion 5-FU/PLLA keratin nanofibers membrane owns good controlled release effect and satisfies cell inhibitory effect against HCT116 cells in vitro,which suggested that it has a promising prospect for clinical therapy.
Objective To prepare collagen-chitosan /nano-hydroxyapatite-collagen-polylactic acid (Col-CS/ nHAC-PLA) biomimetic scaffold and to examine its biocompatibility so as to lay the foundation for its application on the treatment of osteochondral defect. Methods PLA was dissolved in dioxane for getting final concentration of 8%, and the nHAC power was added at a weight ratio of nHAC to PLA, 1 ∶ 1. The solution was poured into a mold and frozen. CS and Col were dissolved in 2% acetum for getting the final concentrations of 2% and 1% respectively, then compounded at a weight ratio of CS to Col, 20 ∶ 1. The solution was poured into the frozen mold containing nHAC-PLA, and then biomimetic osteochondral scaffold of Col-CS/nHAC-PLA was prepared by freeze-drying. Acute systemic toxicity test, intracutaneous stimulation test, pyrogen test, hemolysis test, cytotoxicity test, and bone implant test were performed to evaluate its biocompatibility. Results Col-CS/nHAC-PLA had no acute systemic toxicity. Primary irritation index was 0, indicating that Col-CS/nHAC-PLA had very slight skin irritation. In pyrogen test, the increasing temperature of each rabbit was less than 0.6℃, and the increasing temperature sum of 3 rabbits was less than 1.3℃, which was consistent with the evaluation criteria. Hemolytic rate of Col-CS/nHAC-PLA was 1.38% (far less than 5%). The toxicity grade of Col-CS/nHAC-PLA was classified as grade I. Bone implant test showed that Col-CS/nHAC-PLA had good biocompatibility with the surrounding tissue. Conclusion Col-CS/ nHAC-PLA scaffold has good biocompatibility, which can be used as an alternative osteochondral scaffold.
ObjectiveTo observe the effect of vascular endothelial growth factor/polylactide-polyethyleneglycol-polylactic acid copolymer/basic fibroblast growth factor (VEGF/PELA/bFGF) mixed microcapsules in promoting the angiogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. MethodsThe BMSCs were isolated by the method of whole bone marrow adherent, and sub-cultured. The passage 3 BMSCs were identified by Wright-Giemsa staining and flow cytometry, and used for subsequent experiments. VEGF/PELA/bFGF (group A), PELA/bFGF (group B), VEGF/PELA (group C), and PELA (group D) microcapsules were prepared. The biodegradable ability and cytotoxicity of PELA microcapsule were determined, and the slow-released ability of VEGF/PELA/bFGF mixed microcapsules was measured. The passage 3 BMSCs were co-cultured with the extracts of groups A, B, C, and D, separately. At 1, 3, 7, 14, and 20 days after being cultured, the morphological changes of induced BMSCs were recorded. At 21 days, the induced BMSCs were tested for DiI-labeled acetylated low density lipoprotein (Dil-ac-LDL) and FITC-labeled ulex europaeus agglutinin I (FITC-UEA-I) uptake ability. The tube-forming ability of the induced cells on Matrigel was also verified. The differences of the vascularize indexes in nodes, master junctions, master segments, and tot.master segments length in 4 groups were summarized and analyzed. ResultsThe isolated and cultured cells were identified as BMSCs. The degradation time of PELA was more than 20 days. There was no significant effect on cell viability under co-culture conditions. At 20 days, the cumulative release of VEGF in the mixed microcapsules exceeded 95%, and the quantity of bFGF exceeded 80%. The morphology of cells in groups A, B, and C were changed. The cells in groups A and B showed the typical change of cobble-stone morphology. The numbers of double fluorescent labeled cells observed by fluorescence microscope were the most in group A, and decreases from group B and group C, with the lowest in group D. The cells in groups A and B formed a grid-like structure on Matrigel. Quantitative analysis showed that the differences in the number of nodes, master junctions, master segments, and tot.master segments length between groups A, B and groups C, D were significant (P<0.05). The number of nodes and the tot.master segments length of group A were more than those of group B (P<0.05). There was no significant differences in the number of master junctions and master segments between group A and group B (P>0.05). ConclusionVEGF/PELA/bFGF mixed microcapsules have significantly ability to promote the angiogenic differentiation of rat BMSCs in vitro.