To enhance speech recognition, as well as Mandarin tone recognition in noice, we proposed a speech coding strategy called zero-crossing of fine structure in low frequency (LFFS) for cochlear implant based on low frequency non-uniform sampling (LFFS for short). In the range of frequency perceived boundary of human ear, we used zero-crossing time of the fine structure to generate the stimulus pulse sequences based on the frequency selection rule. Acoustic simulation results showed that although on quiet background the performance of LFFS was similar to continuous interleaved sampling (CIS), on the noise background the performance of LFFS in Chinese tones, words and sentences were significantly better than CIS. In addition to this, we also got better Mandarin recognition factors distribution by using the improved index distribution model. LFFS contains more tonal information which was able to effectively improve Mandarin recognition of the cochlear implant.
Alzheimer’s disease (AD) is the most common degenerative disease of the nervous system. Studies have found that the 40 Hz pulsed magnetic field has the effect of improving cognitive ability in AD, but the mechanism of action is not clear. In this study, APP/PS1 double transgenic AD model mice were used as the research object, the water maze was used to group dementia, and 40 Hz/10 mT pulsed magnetic field stimulation was applied to AD model mice with different degrees of dementia. The behavioral indicators, mitochondrial samples of hippocampal CA1 region and electrocardiogram signals were collected from each group, and the effects of 40 Hz pulsed magnetic field on mouse behavior, mitochondrial kinetic indexes and heart rate variability (HRV) parameters were analyzed. The results showed that compared with the AD group, the loss of mitochondrial crest structure was alleviated and the mitochondrial dynamics related indexes were significantly improved in the AD + stimulated group (P<0.001), sympathetic nerve excitation and parasympathetic nerve inhibition were improved, and the spatial cognitive memory ability of mice was significantly improved (P<0.05). The preliminary results of this study show that 40 Hz pulsed magnetic field stimulation can improve the mitochondrial structure and mitochondrial kinetic homeostasis imbalance of AD mice, and significantly improve the autonomic neuromodulation ability and spatial cognition ability of AD mice, which lays a foundation for further exploring the mechanism of ultra-low frequency magnetic field in delaying the course of AD disease and realizing personalized neurofeedback therapy for AD.