Spike recorded by multi-channel microelectrode array is very weak and susceptible to interference, whose noisy characteristic affects the accuracy of spike detection. Aiming at the independent white noise, correlation noise and colored noise in the process of spike detection, combining principal component analysis (PCA), wavelet analysis and adaptive time-frequency analysis, a new denoising method (PCWE) that combines PCA-wavelet (PCAW) and ensemble empirical mode decomposition is proposed. Firstly, the principal component was extracted and removed as correlation noise using PCA. Then the wavelet-threshold method was used to remove the independent white noise. Finally, EEMD was used to decompose the noise into the intrinsic modal function of each layer and remove the colored noise. The simulation results showed that PCWE can increase the signal-to-noise ratio by about 2.67 dB and decrease the standard deviation by about 0.4 μV, which apparently improved the accuracy of spike detection. The results of measured data showed that PCWE can increase the signal-to-noise ratio by about 1.33 dB and reduce the standard deviation by about 18.33 μV, which showed its good denoising performance. The results of this study suggests that PCWE can improve the reliability of spike signal and provide an accurate and effective spike denoising new method for the encoding and decoding of neural signal.
The brain computer interface (BCI) can be used to control external devices directly through electroencephalogram (EEG) information. A multi-linear principal component analysis (MPCA) framework was used for the limitations of tensor form of multichannel EEG signals processing based on traditional principal component analysis (PCA) and two-dimensional principal component analysis (2DPCA). Based on MPCA, we used the projection of tensor-matrix to achieve the goal of dimensionality reduction and features exaction. Then we used the Fisher linear classifier to classify the features. Furthermore, we used this novel method on the BCI competitionⅡdataset 4 and BCI competitionⅣdataset 3 in the experiment. The second-order tensor representation of time-space EEG data and the third-order tensor representation of time-space-frequency EEG data were used. The best results that were superior to those from other dimensionality reduction methods were obtained by much debugging on parameter P and testQ. For two-order tensor, the highest accuracy rates could be achieved as 81.0% and 40.1%, and for three-order tensor, the highest accuracy rates were 76.0% and 43.5%, respectively.
The process of multi-parametric flow cytometry data analysis is complicate and time-consuming, which requires well-trained professionals to operate on. To overcome this limitation, a method for multi-parameter flow cytometry data processing based on kernel principal component analysis (KPCA) was proposed in this paper. The dimensionality of the data was reduced by nonlinear transform. After the new characteristic variables were obtained, automatical clustering can be achieved using improvedK-means algorithm. Experimental data of peripheral blood lymphocyte were processed using the principal component analysis (PCA)-based method and KPCA-based method and then the influence of different feature parameter selections was explored. The results indicate that the KPCA can be successfully applied in the multi-parameter flow cytometry data analysis for efficient and accurate cell clustering, which can improve the efficiency of flow cytometry in clinical diagnosis analysis.
The result of the emotional state induced by music may provide theoretical support and help for assisted music therapy. The key to assessing the state of emotion is feature extraction of the emotional electroencephalogram (EEG). In this paper, we study the performance optimization of the feature extraction algorithm. A public multimodal database for emotion analysis using physiological signals (DEAP) proposed by Koelstra et al. was applied. Eight kinds of positive and negative emotions were extracted from the dataset, representing the data of fourteen channels from the different regions of brain. Based on wavelet transform, δ, θ, α and β rhythms were extracted. This paper analyzed and compared the performances of three kinds of EEG features for emotion classification, namely wavelet features (wavelet coefficients energy and wavelet entropy), approximate entropy and Hurst exponent. On this basis, an EEG feature fusion algorithm based on principal component analysis (PCA) was proposed. The principal component with a cumulative contribution rate more than 85% was retained, and the parameters which greatly varied in characteristic root were selected. The support vector machine was used to assess the state of emotion. The results showed that the average accuracy rates of emotional classification with wavelet features, approximate entropy and Hurst exponent were respectively 73.15%, 50.00% and 45.54%. By combining these three methods, the features fused with PCA possessed an accuracy of about 85%. The obtained classification accuracy by using the proposed fusion algorithm based on PCA was improved at least 12% than that by using single feature, providing assistance for emotional EEG feature extraction and music therapy.
In order to achieve the automatic identification of liver cancer cells in the blood, the present study adopted a principal component analysis (PCA) and back propagation (BP) algorithm of feedforward neural networks to identify white blood cells and red blood cells in mice and human liver cancer cells, HepG2. The present paper shows the process in which PCA was carried out after obtaining spectral data by fiber confocal back-scattering spectrograph, selecting the first two principal components as spectral features, and establishing a neural network pattern recognition model with two input layer nodes, eleven hidden layer nodes and three output nodes. In order to verify whether the model would give accurate identification of cells, we chose 195 object data to train the model with 150 sets of data as training set and 45 sets as test set. According to the results, the overall recognition accuracy of the three cells was above 90% with the average relative deviation only 4.36%. The results showed that PCA+BP algorithm could automatically identify liver cancer cells from erythrocyte and white blood cells, which will provide a useful tool for the study of metastasis and biological metabolism characteristics of liver cancer.
Aiming at feature selection problem of motor imagery task in brain computer interface (BCI), an algorithm based on mutual information and principal component analysis (PCA) for electroencephalogram (EEG) feature selection is presented. This algorithm introduces the category information, and uses the sum of mutual information matrices between features under different motor imagery category to replace the covariance matrix. The eigenvectors of the sum matrix represent the direction of the principal components and the eigenvalues of the sum matrix are used to determine the dimensionality of principal components. 2005 International BCI competition data set was used in our experiments, and four feature extraction methods were adopted, i. e. power spectrum estimation, continuous wavelet transform, wavelet packet decomposition and Hjorth parameters. The proposed feature selection algorithm was adopted to select and combine the most useful features for classification. The results showed that relative to the PCA algorithm, our algorithm had better performance in dimensionality reduction and in classification accuracy with the assistance of support vector machine classifier under the same dimensionality of principal components.
Focused on the world-wide issue of improving the accuracy of emotion recognition, this paper proposes an electroencephalogram (EEG) signal feature extraction algorithm based on wavelet packet energy entropy and auto-regressive (AR) model. The auto-regressive process can be approached to EEG signal as much as possible, and provide a wealth of spectral information with few parameters. The wavelet packet entropy reflects the spectral energy distribution of the signal in each frequency band. Combination of them gives a better reflect of the energy characteristics of EEG signals. Feature extraction and fusion are implemented based on kernel principal component analysis. Six emotional states from a public multimodal database for emotion analysis using physiological signals (DEAP) are recognized. The results show that the recognition accuracy of the proposed algorithm is more than 90%, and the highest recognition accuracy is 99.33%. It indicates that this algorithm can extract the feature of EEG emotion well, and it is a kind of effective emotion feature extraction algorithm, providing support to emotion recognition.
The traditional method of multi-parameter flow data clustering in flow cytometry is to mainly use professional software to manually set the door and circle out the target cells for analysis. The analysis process is complex and professional. Based on this, a clustering algorithm, which is based on t-distributed stochastic neighbor embedding (t-SNE) algorithm for multi-parameter stream data, is proposed in the paper. In this algorithm, the Euclidean distance of sample data in high dimensional space is transformed into conditional probability to represent similarity, and the data is reduced to low dimensional space. In this paper, the stained human peripheral blood cells were treated by flow cytometry, and the processed data were derived as experimental sample data. Thet-SNE algorithm is compared with the kernel principal component analysis (KPCA) dimensionality reduction algorithm, and the main component data obtained by the dimensionality reduction are classified using K-means algorithm. The results show that thet-SNE algorithm has a good clustering effect on the cell population with asymmetric and trailing distribution, and the clustering accuracy can reach 92.55%, which may be helpful for automatic analysis of multi-color multi-parameter flow data.
In order to realize sleep staging automatically and conveniently, we used support vector machine (SVM) to analyze the correlation between heart rate variability and sleep stage experimentally. R-R intervals (RRIs) from 33 cases of sleep clinical data of Tianjin Thoracic Hospital were extracted and analyzed by principal component analysis (PCA). The SVM method was used to establish the model and predict the five sleep stages. The prediction accuracy of three-sleep-stage was higher than 80%, in contrast to sleep scoring annotations marked by physiological experts based on electroencephalogram (EEG) golden standard. The result showed that there was a good correlation between heart rate variability and sleep staging. This method is an important supplement to the traditional sleep staging method and has a great value for clinical application.
Objective To propose a heart sound segmentation method based on multi-feature fusion network. Methods Data were obtained from the CinC/PhysioNet 2016 Challenge dataset (a total of 3 153 recordings from 764 patients, about 91.93% of whom were male, with an average age of 30.36 years). Firstly the features were extracted in time domain and time-frequency domain respectively, and reduced redundant features by feature dimensionality reduction. Then, we selected optimal features separately from the two feature spaces that performed best through feature selection. Next, the multi-feature fusion was completed through multi-scale dilated convolution, cooperative fusion, and channel attention mechanism. Finally, the fused features were fed into a bidirectional gated recurrent unit (BiGRU) network to heart sound segmentation results. Results The proposed method achieved precision, recall and F1 score of 96.70%, 96.99%, and 96.84% respectively. Conclusion The multi-feature fusion network proposed in this study has better heart sound segmentation performance, which can provide high-accuracy heart sound segmentation technology support for the design of automatic analysis of heart diseases based on heart sounds.