west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "proliferation" 88 results
  • Structural control and characterization of hierarchically structured fibrous scaffolds

    ObjectiveTo prepare hierarchically structured fibrous scaffolds with different morphologies, and to explore the additional dimensionality for tuning the physicochemical properties of the scaffolds and the effect of their hemocompatibility and cytocompatibility.MethodsElectrospinning poly (e-caprolactone) (PCL)/polyvinylpyrrolidone (PVP) bicomponent fibers (PCL∶PVP mass ratios were 8∶2 and 5∶5 respectively), and the surface porous fibrous scaffolds were prepared by extracting PVP components. The scaffolds were labeled PCL-P8 and PCL-P5 respectively according to the mass ratio of polymer. In addition, shish-kebab (SK) structured scaffolds with different kebab sizes were created by solution incubation method, which use electrospun PCL fibers as shish while PCL chains in solution crystallizes on the fiber surface. The PCL fibrous scaffolds with smooth surface was established as control group. The hierarchically structured fibrous scaffolds were characterized by field emission scanning electron microspore, water contact angle tests, and differential scanning calorimeter (DSC) experiments. The venous blood of New Zealand white rabbits was taken and hemolysis and coagulation tests were used to characterize the blood compatibility of the scaffolds. The proliferation of the pig iliac artery endothelial cell (PIEC) on the scaffolds was detected by cell counting kit 8 (CCK-8) method, and the biocompatibility of the scaffolds was evaluated.ResultsField emission scanning electron microscopy showed that porous morphology appeared on the surface of PCL/PVP bicomponent fibers after extracting PVP. In addition, SK structure with periodic arrangement was successfully prepared by solution induction, and the longer the crystallization time, the larger the lamellar size and periodic distance. The contact angle and DSC measurements showed that when compared with smooth PCL fiber scaffolds, the crystallinity of PCL surface porous fibrous scaffolds and PCL-SK fibrous scaffolds increased, while the hydrophobicity of PCL-SK fibrous scaffolds increased, but the hydrophobicity of PCL porous scaffolds did not change significantly. The hemolysis test showed that the hemolysis rate of PCL surface porous fibrous scaffolds and PCL-SK fibrous scaffolds was higher than that of PCL fibrous scaffolds. According to American Society of Materials and Tests (ASTM) F756-08 standard, all scaffolds were non-hemolytic materials and were suitable for blood contact materials. Coagulation test showed that the coagulation index of PCL surface porous fibrous scaffolds and PCL-SK fibrous scaffolds was higher than that of PCL fibrous scaffolds at 5 and 10 minutes of culture. CCK-8 assay showed that both hierarchically structured fibrous scaffolds were more conducive to PIEC proliferation than PCL fibrous scaffold.ConclusionBased on electrospinning technology, solution-induced and blend phase separation methods can be used to construct multi-scale fiber scaffolds with different morphologies, which can not only regulate the surface physicochemical properties of the scaffolds, but also have good blood compatibility and biocompatibility. The hierarchically structured fibrous scaffolds have high application potential in the field of tissue engineering.

    Release date:2019-05-06 04:46 Export PDF Favorites Scan
  • Comparison of biological characteristics between bone marrow mesenchymal stem cells and anterior cruciate ligament derived mesenchymal stem cells in rats

    Objective To compare the biological characteristics of bone marrow mesenchymal stem cells (BMSCs) and anterior cruciate ligament derived mesenchymal stem cells (ACL-MSCs) from ratsin vitro. Methods Ten male SPF-level BN rats, weighing 200-220 g, were selected to obtain anterior cruciate ligaments and bone marrows, and ACL-MSCs and BMSCs were isolated for passage culture respectively under sterile condition. The cell morphology was observed, and the cells at passage 3 were used to detect the surface markers of CD34, CD45, CD90, and CD29 by flow cytometry, the ability of cell proliferation by cell counting kit 8 (CCK-8), and colony formation ability by clone forming test. The mRNA levels of differentiation related genes [alkaline phosphatas (ALP), bone gamma-carboxyglutamate protein, runt related transcription factor 2, bone morphogenetic protein 2 (BMP-2), secreted phosphoprotein 1 (Spp1), collagen type II α1 (Col2α1), Aggrecan (Acan), Sox9, peroxisome proliferator activated receptor γ2 (PPARγ2), and CCAAT-enhancer-binding protein-α] were also determined by real-time fluorescent quantitative PCR. Results BMSCs and ACL-MSCs had similar morphology, adherent cells displaying long fusiform. The immunoprofile of ACL-MSCs and BMSCs at passage 3 was positive for CD29 and CD90 and was negative for CD45 and CD34. The absorbance (A) value of ACL-MSCs (1.11±0.08) was significantly higher than that of BMSCs (0.78±0.05) (t=3.599,P=0.023); the number of colonies of ACL-MSCs [(53.00±5.51)/hole] was significantly more than that of BMSCs [(30.67±4.84)/hole] (t=3.045,P=0.038). The results of toluidine blue staining, alizarin red staining, and oil red O staining were positive in BMSCs and ACL-MSCs at 21 days after osteogenic, chondrogenic, and adipogenic induction. The mRNA expressions of BMP-2, Spp1, Col2α1, Acan, Sox9, and PPARγ2 in ACL-MSCs were significantly higher than those in BMSCs (P<0.01). Conclusion The proliferation potential of ACL-MSCs is greater than that of BMSCs, and the former is apt to differentiate into chondrocytes. ACL-MSCs are promising cells to promote tendon-bone healing.

    Release date:2017-04-12 11:26 Export PDF Favorites Scan
  • Apoptosis induced by berbamine in retinoblastoma HXORB44 cells

    Objective To investigate the effect of berbamine (BBM) on the proliferation and apoptosis of retinoblastoma (RB) HXO-RB44 cells and its possible mechanism in vitro.Methods RB cells in logarithmic growth phase were divided into BBM treated group and control group. RB cells in BBM treated group were cultured with different concentrations of BBM (2,4,8,16 and 32 mg/L) for 24,48 and 72 hours, respectively. The proliferation was assayed by methyl Thiazolyl tetrazolium (MTT). RB cells were cultured with different concentrations of BBM (4,8 and 16 mg/L) for 24 hours. The early apoptotic rates were detected by flow cytometry; the expression of bcl-2 and Bax were measured by enzyme-linked immunosorbent assay (ELISA) and the activity of Caspase-3 was detected by colorimetric assay.Results BBM could obviously inhibit the proliferation of RB cells in a time and dose dependent manner (24 hours: F=70.547,P<0.01; 48 hours: F=603.438,P<0.01; 72 hours: F=577.521,P<0.01). The IC50 value at 24,48 and 72 hours were 25.26, 10.94 and 6.25 mg/L, respectively. Necrosis rates of control group and BBM treated group were (1.25plusmn;0.45)%, (4.10plusmn;2.95)%, (4.39plusmn;0.21)% and (10.54plusmn;4.38)% respectively; the difference between two groups was statistically significant (F=6.527,P<0.05). Apoptotic and necrosis rates in advanced stage of control group and BBM treated group were (2.13plusmn;0.71)%, (5.45plusmn;2.31)%, (9.86plusmn;3.18)% and (11.10plusmn;1.70)%, respectively. The difference between two groups was statistically significant (F=10.845,P<0.05). Early apoptotic rates of control group and BBM treated group were (0.51plusmn;0.26)%, (2.68plusmn;0.35)%, (5.97plusmn;0.50)% and (11.22plusmn;1.17)%, respectively. The difference between two groups was statistically significant (F=144.976,P<0.01). In addition, BBM dose-dependently reduced bcl-2 level and increased Bax expression, causing the reduction of the bcl-2/Bax protein ratio as well as increased the Caspase-3 activity in RB cells remarkably (bcl-2: F=835.726,P<0.01; bax: F=111.963, P<0.01;Caspase-3:F=298.058,P<0.01).Conclusions BBM can inhibit the proliferation and induce apoptosis or necrosis of RB cells in vitro, down regulating the expression of bcl-2, up regulating the expression of Bax. Along with increased Caspase-3 activity these may be the apoptotic mechanisms.

    Release date:2016-09-02 05:26 Export PDF Favorites Scan
  • Effects of long time different negative pressures on osteogenic differentiation of rabbit bone mesenchymal stem cells

    Objective To investigate the effects of long time different negative pressures on osteogenic diffe-rentiation of rabbit bone mesenchymal stem cells (BMSCs). Methods The rabbit BMSCs were isolated and cultured by density gradient centrifugation. Flow cytometry was used to analyze expression of surface markers. The third passage cells cultured under condition of osteogenic induction and under different negative pressure of 0 mm Hg (control group), 75 mm Hg (low negative pressure group), and 150 mm Hg (high negative pressure group) (1 mm Hg=0.133 kPa), and the negative pressure time was 30 min/h. Cell growth was observed under phase contrast microscopy, and the growth curve was drawn; alkaline phosphatase (ALP) activity was detected by ELISA after induced for 3, 7, and 14 days. The mRNA and protein expressions of collagen type I (COL-I) and osteocalcin (OC) in BMSCs were analyzed by real-time fluorescence quantitative PCR and Western blot. Results The cultured cells were identified as BMSCs by flow cytometry. The third passage BMSCs exhibited typical long shuttle and irregular shape. Cell proliferation was inhibited with the increase of negative pressure. After induced for 4 days, the cell number of high negative pressure group was significantly less than that in control group and low negative pressure group (P<0.05), but there was no significant difference between the low negative pressure group and the control group (P>0.05); at 5-7 days, the cell number showed significant difference between 3 groups (P<0.05). The greater the negative pressure was, the greater the inhibition of cell proliferation was. There was no significant difference in ALP activity between groups at 3 days after induction (P>0.05); the ALP activity showed significant difference (P<0.05) between the high negative pressure group and the control group at 7 days after induction; and significant difference was found in the ALP activity between 3 groups at 14 days after induction (P<0.05). The greater the negative pressure was, the higher the ALP activity was. Real-time fluorescence quantitative PCR and Western blot detection showed that the mRNA and protein expressions of COL-I and OC protein were significantly higher in low negative pressure group and high negative pressure group than control group (P<0.05), and in the high negative pressure group than the low negative pressure group (P<0.05). Conclusion With the increase of the negative pressure, the osteogenic differentiation ability of BMSCs increases gradually, but the cell proliferation is inhibited.

    Release date:2017-05-05 03:16 Export PDF Favorites Scan
  • Effect and mechanism of SAPCD2 on the biological function of lung adenocarcinoma A549 cells

    Objective To investigate the expression of SAPCD2 in the lung adenocarcinoma cells, and to study the effect of SAPCD2 regulating Hippo signaling pathway on the proliferation, invasion, migration and apoptosis of the lung adenocarcinoma cells and its mechanism. Methods Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression levels of SAPCD2 mRNA and protein in four types of lung cancer cells (HCC827, H1650, SK-MES-1, A549) and human normal lung epithelial cells (BESA-2B), respectively. Then, lung cancer cells with relatively high levels of SAPCD2 expression were selected for subsequent experiments. The experiment cells were divided into a normal control group (NC group), a si-SAPCD2 group, and a pathway inhibitor group (si-SAPCD2+XMU-MP-1 group). Firstly, SAPCD2 mRNA was silenced using small interfering RNA (siRNA) technology, and then qRT-PCR was used to detect the expression of SAPCD2 in transfected lung cancer cells; using clone plate assay to detect the proliferation of lung cancer cells after silencing; using flow cytometry to detect the apoptosis of lung cancer cells after silencing; observe the number of lung cancer cells at different stages through cell cycle experiments; then Transwell experiment was used to analyze the effect of silencing SAPCD2 on the migration and invasion of lung cancer cell migration. Finally, Western blot was used to detect the expression of ki-67, Bcl-2, Caspase-3, NF2, P-MST1, P-LATS1, P-YAP, YAP, and TAZ proteins.Results SAPCD2 had the highest expression level in lung adenocarcinoma A549 cells (P<0.01). Silencing SAPCD2 significantly decreased the proliferation ability of A549 cells (P<0.01), inhibited their migration (P<0.05) and invasion (P<0.01), and promoted A549 cell apoptosis (P<0.01); more than half of the cells remained in the G0/G1 phase. Compared with the NC group, A549 cells showed a significant increase in G0/G1 phase cells (P<0.01), a significant decrease in G2/M and S phase cells (P<0.01), and a significant increase in the proportion of early apoptotic cells (P<0.01). Western blot results showed that silencing SAPCD2 down-regulated the expression of ki-67, Bcl-2, YAP, and TAZ proteins compared to the NC group (P<0.01), and up-regulated the expression of Caspase-3, NF2, P-MST1, P-LATS1, and P-YAP proteins (P<0.01). Conclusions The expression of SAPCD2 in lung adenocarcinoma A549 cells is significantly higher than that in normal lung epithelial cells (BESA-2B), which promotes the proliferation, migration and invasion of A549 cells and inhibits apoptosis. The mechanism may be related to the inhibition of Hippo signaling pathway.

    Release date:2023-10-18 09:49 Export PDF Favorites Scan
  • Indomethacin suppress the proliferation and invasion of human choroidal melanoma cells

      Objective To observe the influence of the indomethacin on the proliferative and invasive activity of OCM-1 human choroidal melanoma cells. Methods OCM-1 cells were cultured with different concentrations of indomethacin (25, 50, 100, 200, 400 mu;mol/L ), and their proliferation were assessed by methyl thiazolyl tetrazolium(MTT), invasive behaviors were examined by cell invasion assays, expression of survivin and VEGF were evaluated by reverse transcriptase polymerase chain reaction(RT-PCR), immunofluorescence staining, ELISA and western blot analysis. Result All concentrations of indomethacin in this study can inhibit the proliferation and invasion of OCM-1 cells in a time and dosage-dependant manner(MTT/24 h:F=19.642,P<0.01;MTT/48 h:F=136.597,P<0.01;MTT/72 h:F=582.543,P<0.01;invasion assays:F=54.225,P<0.01). Immunofluorescence staining indicated that survivin and VEGF mainly expressed in the cytoplasm of OCM-1 cells. Survivin mRNA in OCM-1 cells was inhibited by 100, 200, 400 mu;mol/L indomethacin(F=16.679,P<0.01). The concentrations of survivin were (787.3plusmn;47.37), (257.0plusmn;26.21), (123.3plusmn;8.02) pg/ml in control group and 100, 400 mu;mol/L indomethacin groups, respectively. Survivin expression was also significantly down-regulated in indomethacin-treated cells by Western blot analysis.Indomethacin had no effects on VEGF expression in OCM-1 cells.Conclusions Indomethacin can inhibit proliferation and invasion of OCM-1 cells in vitro,down-regulated expression of survivin may be the mechanism.

    Release date:2016-09-02 05:37 Export PDF Favorites Scan
  • Effects of pipecolic acid oxidase on proliferation, apoptosis, migration and invasion of primary liver cancer cells

    ObjectiveTo investigate the effects of pipecolic acid oxidase (PIPOX) on the proliferation, apoptosis, migration and invasion of primary liver cancer cells. MethodsImmunohistochemical staining and analysis of The Cancer Genome Atlas (TCGA) database were used to examine the PIPOX expression levels in liver cancer tissues and paired adjacent normal tissues, and studied their relationship with patient prognosis. Liver cancer cell lines stably overexpressing or knocking out PIPOX were constructed to explore PIPOX’s impact on liver cancer cell proliferation, apoptosis, migration and invasion by conducting in vitro functional experiments such as CCK-8, EdU, apoptosis detection, and Transwell assays. In vivo, nude mice subcutaneous tumor models and lung metastasis models were used to verify PIPOX’s effect on liver cancer growth and metastasis. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were both employed to detect the expression of epithelial-mesenchymal transition (EMT) markers in liver cancer cells. ResultsImmunohistochemical staining and TCGA database analysis revealed that PIPOX expression was significantly lower in liver cancer tissues compared to paired adjacent normal tissues (P<0.05). Prognostic analysis indicated shorter overall survival and disease-free survival in PIPOX low expression group (P<0.05). In vitro gain- and loss-of-function experiments showed that PIPOX significantly inhibited liver cancer cell migration and invasion (P<0.05), while having no significant effects on their proliferation and apoptosis (P>0.05). Animal experiments also confirmed that PIPOX significantly inhibited liver cancer lung metastasis (P<0.05), but had no significant effects on tumor growth (P>0.05). Finally, RT-qPCR and western blot results revealed that PIPOX promoted the expression of the epithelial marker E-cadherin (P<0.05) and inhibited the expression of mesenchymal markers (N-cadherin, vimentin, Snail) (P<0.05). ConclusionsPIPOX significantly inhibits liver cancer cell migration and invasion, potentially via suppressing the EMT process. However, PIPOX does not significantly affect liver cancer cell proliferation and apoptosis.

    Release date:2024-12-27 11:26 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF PROLIFERATION OF SCHWANN CELLS CULTURED WITH GINSENOSIDE Rb_1

    OBJECTIVE: To investigate the effects of Ginsenoside Rb1 on the proliferation of Schwann cell cultured. METHODS: The sciatic nerve from SD rats was cultured in vitro; 10 micrograms/ml, 20 micrograms/ml, 200 micrograms/ml and 1 mg/ml Ginsenoside Rb1 was applied on the fifth day of culture. The proliferation of Schwann cells of sciatic nerves was determined in different time by MTT assay and thymidine incorporation assay. RESULTS: 10 micrograms/ml of Ginsenoside Rb1 significantly induced Schwann cell proliferation better than DMEM cell culture medium, but higher concentrations of Ginsenoside Rb1 at 1 mg/ml significantly inhibited the proliferation of Schwann cells, whereas 200 micrograms/ml of Ginsenoside Rb1 had similar effects to DMEM culture medium. CONCLUSION: Ginsenoside Rb1 at the optimal concentration is effective on inducing the proliferation of Schwann cells, but at higher concentration is cytotoxic for Schwann cells.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • The expression of Hsa-miR-29c in gastric cancer and its clinical significance

    ObjectiveTo analyze the expression of Hsa-miR-29c in gastric cancer and its mechanism of action, and to explore its relationship with clinicopathological characteristics and prognosis of gastric cancer patients.MethodsTheoverexpression of Hsa-miR-29c in gastric cancer cell lines of MKN28 and MKN45 were established by lentivirus transfection (transfection group), and the control group of empty lentivirus (negative control group) was established. The expressions of Hsa-miR-29c in cells of the two groups after transfection were detected by real time polymerase chain reaction (qRT-PCR), and the proliferation and clonogenesis of cells in the two groups were detected by CCK-8 and plate cloning. The expression of extracellular matrix protein 1 (ECM1), type Ⅰ collagen (Col Ⅰ), smooth muscle actin(α-SMA), matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the two groups were detected by Western blot. qRT-PCR and immunohistochemistry were used to detect the expression of Hsa-miR-29c in 70 gastric cancer tissues and adjacent tissues respectively, and then analyzed its relationship with the clinicopathological features and prognosis of gastric cancer.ResultsThe stable expression of Hsa-miR-29c gastric cancer cell line was successfully constructed in this research, the expression of Hsa-miR-29c in the transfection group was significantly higher than that in the negative control group (P<0.05). The proliferation and clone forming ability of MKN28 and MKN45 cells in the transfection group were significantly lower than those in the negative control group (P<0.05). Compared with the negative control group, the expression of Col Ⅰ and TIMP-1 in MKN28 and MKN45 cells were increased after transfection, while the expression levels of ECM1, α-SMA, and MMP-2 were significantly decreased, with significant differences between the two groups (P<0.05). The expression level of Hsa-miR-29c in gastric cancer tissues was significantly lower than that of adjacent tissues (P<0.05), and the positive expression rate was not related to age, sex, and pathological type (P>0.05), but related to tumor size, TNM stage, tumor differentiation, and lymph node metastasis (P<0.05). The mean survival time (MST) of patients with negative expression of Hsa-miR-29c was significantly shorter than that of patients with positive expression (P=0.029).ConclusionsHsa-miR-29c is down expressed in gastric cancer, and is related to the clinical characteristics and prognosis of it. The overexpression of Hsa-miR-29c can inhibit the proliferation of gastric cancer cells, and the mechanism may be related to the inhibition of extracellular matrix (ECM) signaling pathway.

    Release date:2021-02-08 07:10 Export PDF Favorites Scan
  • Biological function of bladder smooth muscle cells regulated by multi-modal biomimetic stress

    Previous studies have shown that growth arrest, dedifferentiation, and loss of original function occur in cells after multiple generations of culture, which are attributed to the lack of stress stimulation. To investigate the effects of multi-modal biomimetic stress (MMBS) on the biological function of human bladder smooth muscle cells (HBSMCs), a MMBS culture system was established to simulate the stress environment suffered by the bladder, and HBSMCs were loaded with different biomimetic stress for 24 h. Then, cell growth, proliferation and functional differentiation were detected. The results showed that MMBS promoted the growth and proliferation of HBSMCs, and 80 cm H2O pressure with 4% stretch stress were the most effective in promoting the growth and proliferation of HBSMCs and the expression level of α-smooth muscle actin and smooth muscle protein 22-α. These results suggest that the MMBS culture system will be beneficial in regulating the growth and functional differentiation of HBSMCs in the construction of tissue engineered bladder.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content