During the new coronavirus disease 2019 (COVID-19) pandemic, there has been controversy over whether emergency surgical management should be performed or not in the patients with COVID-19. Stanford type A aortic dissection is a very urgent life-threatening disease, and guidelines recommend surgical treatment for patients with type A aortic dissection in the first instance. However, intraoperative extracorporeal circulation can be fatal to patients recovering from COVID-19. During the pandemic, extracorporeal membrane oxygenation (ECMO) has played an important role in supporting COVID-19 patients with acute respiratory failure. This article reports a successful V-V ECMO treatment for a Stanford type A aortic dissection patient, who suffered respiratory failure caused by COVID-19 after emergency surgery.
ObjectiveTo explore the risk factors for postoperative respiratory failure (RF) in patients with esophageal cancer, construct a predictive model based on the least absolute shrinkage and selection operator (LASSO)-logistic regression, and visualize the constructed model. MethodsA retrospective analysis was conducted on patients with esophageal cancer who underwent surgical treatment in the Department of Thoracic Surgery, Sun Yat-sen University Cancer Center Gansu Hospital from 2020 to 2023. Patients were divided into a RF group and a non-RF (NRF) group according to whether RF occurred after surgery. Clinical data of the two groups were collected, and LASSO-logistic regression was used to optimize feature selection and construct the predictive model. The model was internally validated by repeated sampling 1000 times based on the Bootstrap method. ResultsA total of 217 patients were included, among which 24 were in the RF group, including 22 males and 2 females, with an average age of (63.33±9.10) years; 193 were in the NRF group, including 161 males and 32 females, with an average age of (62.14±8.44) years. LASSO-logistic regression analysis showed that the percentage of forced expiratory volume in one second/forced vital capacity (FEV1/FVC) to predicted value (FEV1/FVC%pred) [OR=0.944, 95%CI (0.897, 0.993), P=0.026], postoperative anastomotic fistula [OR=4.106, 95%CI (1.457, 11.575), P=0.008], and postoperative lung infection [OR=3.776, 95%CI (1.373, 10.388), P=0.010] were risk factors for postoperative RF in patients with esophageal cancer. Based on the above risk factors, a predictive model was constructed, with an area under the receiver operating characteristic curve of 0.819 [95%CI (0.737, 0.901)]. The Hosmer-Lemeshow test for the calibration curve showed that the model had good goodness of fit (P=0.527). The decision curve showed that the model had good clinical net benefit when the threshold probability was between 5% and 50%. Conclusion FEV1/FVC%pred, postoperative anastomotic fistula, and postoperative lung infection are risk factors for postoperative RF in patients with esophageal cancer. The predictive model constructed based on LASSO-logistic regression analysis is expected to help medical staff screen high-risk patients for early individualized intervention.
ObjectiveTo observe the clinical efficacy of invasive-noninvasive sequential mechanical ventilation in the treatment of chronic obstructive pulmonary disease (COPD) complicated by type Ⅱ respiratory failure. MethodsA total of 100 patients with COPD complicated with type Ⅱ respiratory failure from March 2013 to April 2014 were randomly divided into control group and study group (with 50 patients in each). While the control group was given continuous invasive ventilation treatment, the study group was treated with invasive-noninvasive sequential ventilation. The ventilation time, Intensive Care Unit (ICU) monitoring and hospitalization time, the serum concentrations of C-reactioin protein (CRP) before and after treatment and the ventilator associated pneumonia (VAP) and hospital mortality rate were observed and compared between the two groups. ResultsFor patients in the study group, ICU monitoring time, ventilation time and hospitalization time were (9.4±8.1), (10.3±5.8), and (14.7±8.2) days, respectively, significantly shorter than those in the control group[(17.5±10.8), (15.2±7.7), and (22.8±7.4) days] (P<0.05). The incidence of VAP and nosocomial VAP mortality in the study group were 4.0% and 2.0% respectively, which were significantly lower than those in the control group (22.0% and 20.0%), and the differences were statistically significant (P<0.05). ConclusionIn the clinical treatment of COPD patients with type Ⅱ respiratory failure, invasive-noninvasive sequential ventilation treatment is effective in shortening the duration of ventilation and hospitalization time, controlling the incidence of VAP, and reducing the mortality rate, which is worthy of clinical popularization.
Abstract: Objective To analyze risk factors associated with postoperative respiratory failure in patients with valvular surgery. Methods Between January 2001 and November 2010, clinical data of 618 patients with 339 males and 279 fameles at age of 10-74(44.01±13.95)years,undergoing valvular operations were investigated retrospectively. We divided the patients into two groups according to the presence (74 patients)or absence(544 patients)of postoperative respiratory failure. Its risk factors were evaluated by univariate and multivariate logistic regression analysis. Results The hospital mortality rate of valvular surgery was 6.1%(38/618).The morbidity rate of respiratory failure was 12.0%(74/618) with hospital mortality rate at 17.6%(13/74) which was significantly higher than those patients without postoperative respiratory failure at 4.6%(25/544, χ2=18.994, P=0.000). Univariate analysis showed age> 65 years(P=0.005), New York Heart Association(NYHA)classⅣ(P=0.014), election fraction< 50.0%(P=0.003), cardiopulmonary bypass time> 3 h(P=0.001), aortic cross clamping time> 2 h(P=0.008), concomitant operation( valvular operation with coronary artery bypass grafting, Bentall or radiofrequency ablation maze operation(P=0.000), reoperation(P=0.012), postoperative complications (P=0.000), and blood transfusion> 2 000 ml(P=0.000) were important risk factors for postoperative respiratory failure. Multivariate logistic regression showed that concomitant operation(P=0.003), reoperation(P=0.010), postoperative complications(P=0.000), and blood transfusion>2 000 ml(P=0.012)were significant independent predictive risk factors. Conclusion This study suggest that patients with predictive risk factors of postoperative respiratory failure need more carefully treated. The morbidity of these patients would be reduced through improving perioperative management, shortening cardiopulmonary bypass time and reducing postoperative complications.
ObjectiveTo systematically evaluate the effect of high-flow nasal cannula in immunocompromised patients with acute respiratory failure.MethodsRandomized controlled trials (RCT) or cohort studies on the efficacy of high-flow oxygen therapy in immunocompromised patients with acute respiratory failure were reviewed by computer in PubMed, EMBASE, Cochrane Library, and China Knowledge Network, Wanfang and VIP databases. The group used HFNC and the control group used a mask or a nasal catheter to give oxygen-based conventional oxygen therapy (COT) or noninvasive ventilation (NIV). Two investigators conducted quality assessments and data extractions based on the Cochrane Collaboration Risk Assessment Manual and the Newcastle-Ottawa Scale. Meta analysis was performed using RevMan 5.3 software. The main outcome measures included tracheal intubation rate, and intensive care unit (ICU) mortality. The secondary outcomes included ICU hospitalization time.ResultsThe study included 13 articles (4 RCTs, 9 cohort studies), a total of 1133 subjects, with 583 in the HFNC group and 550 in the control group (280 in the COT and 270 in the NIV). Meta-analysis showed that HFNC was significantly different from COT in reducing tracheal intubation rate in immunocompromised patients with respiratory failure (OR=0.49, 95%CI 0.33 - 0.72, P=0.0003), but no statistical significance compared with NIV (OR=0.73, 95%CI 0.52 - 1.02, P=0.07); two-combination analysis showed that HFNC had a significant advantage in reducing tracheal intubation rate compared with COT/NIV (combined OR=0.61, 95%CI 0.47 - 0.79, P=0.0002). In terms of ICU mortality, there was a statistically significant difference between HFNC and COT (OR=0.59, 95%CI 0.35 - 1.01, P=0.05) or NIV (OR=0.63, 95%CI 0.44 - 0.91, P=0.01). The results of the two subcombinations and analysis did not change (combined OR=0.62, 95%CI 0.46 - 0.83, P=0.002). In terms of ICU hospital stay, there was no statistically significant difference between HFNC and COT (MD=−4.52, 95%CI −9.43 - 0.39, P=0.07), but the difference was statistically significant compared with NIV (MD=−1.46, 95%CI −2.41 - −0.51, P =0.003); the two sub-combinations and analysis results showed significant difference (combined MD=−3.41, 95%CI −6.16 - −0.66, P=0.01). According to different research types, after subgroup analysis, the analysis results were not different from the combined results. Sensitivity analysis revealed that HFNC could significantly reduce the patient's ICU hospital stay compared with the control group oxygen therapy. The results of the funnel chart analysis show that there were publication offsets in the studies on tracheal intubation rate and ICU mortality included in the literature; studies on ICU hospital stays had a smaller publication offset.ConclusionsCompared with COT, HFNC can reduce the tracheal intubation rate of patients, but there is no significant difference compared with NIV; HFNC can reduce the ICU mortality of patients compared with COT/NIV. However, due to the high heterogeneity between the studies, whether HFNC can reduce ICU hospital stay remains to be further explored.
ObjectiveTo evaluate the safety and efficacy of non-invasive positive pressure ventilation (NIPPV) combined with fiberoptic bronchoscopy(FB) on acute exacerbation of chronic obstructive puhmonary disease (AECOPD) patients with acute respiratory failure. MethodsA prospective study was conducted on the AECOPD patients with respiratory failure in respiratory intensive care unit of Tangdu Hospital of Fourth Military Medicine University from February 2010 to February 2011.They were randomly divided into a case group and a control group.The case group was administrated FB and lavage after one hour of NIPPV treatment.The control group was administrated NIPPV without FB and lavage.Other treatment regimen was the same in two groups. ResultsThere were 51 subjects recruited in the study, 25 subjects in the case group and 26 subjects in the control group.All variables at baseline were matched (P > 0.05).All variables improved after one hour of NIPPV before FB, without significant difference between two groups (P > 0.05).During the period of FB, heart rate in the case group was faster than that in the control group (P < 0.05), and other variables were not significantly different between two groups (P > 0.05).Both groups received NIPPV for one hour after FB, the variables including heart rate, respiratory rate, pH, PaO2, PaCO2 were statistically significant between two groups(P < 0.05).At the time of 24 hours after FB, the variables including mean arterial pressure, heart rate, respiratory rate, pH, PaO2 and PaCO2 in the case group were nearly recovered, and differences between two groups were significant (P < 0.05).The positive rate of sputum culture was significantly higher in the case group than that in the control group[88.0%(22/25) vs.58.6%(14/26)].Success rate in the case group were obviously superior to that in control group.The cases of failure, death and refusing in the case group were lower than those in the control group.Complications in two groups had no significant difference (P > 0.05).There was not serious complication such as hear arrest, hemoptysis and apnea during the process of NIPPV combined with early FB. Conclusion It deserves to be used in clinic because of the safety, efficacy and feasible for most of AECOPD patients through NIPPV combined with early FB.
Objective To investigate the effectiveness of noninvasive positive pressure ventilation( NPPV) in acute exacerbation of chronic obstructive pulmonary disease ( AECOPD) complicated with severe type Ⅱ respiratory failure.Methods 37 patients who were admitted fromJanuary 2008 to June 2009 due to AECOPD complicated with severe type Ⅱ respiratory failure and had received NPPV therapy were enrolled as a NPPV group. Another similar 42 cases who had not received NPPV therapy served as control. All subjects received standard medication therapy according to the guideline. Arterial blood gases before and after treatment, the duration of hospitalization and intubation rate were observed. Results The arterial pH, PaO2 ,and PaCO2 improved significantly after treatment as compared with baseline in both groups ( P lt; 0. 05) .Compared with the control group, the average duration of hospitalization was significantly shorter ( 10 ±5 vs.19 ±4 days, P lt;0. 05) and the intubation rate was significantly lower ( 2. 7% vs. 16. 7% , P lt;0. 05) in the NPPV group. Conclusion The use of NPPV in AECOPD patients complicated with severe type Ⅱ respiratory failure is effective in improving arterial blood gases, reducing the duration of hospitalization and intubation rate.
Objective To identify the clinical features and risk factors for mortality associated with severe influenza B pneumonia of adults admitted to respiratory intensive care unit (ICU). Methods Patients with confirmed influenza B infection and respiratory failure between February 2020 and February 2022 who were admitted to the ICU were sequentially included. Demographic features, clinical data, microbiological data, complications, and outcomes were collected. Univariate logistic regression analysis was performed to identify risk factors associated with hospital mortality. A comparison with severe influenza A pneumonia was made to explore the characteristics of influenza B virus-associated pneumonia. Results A total of 23 patients with influenza B pneumonia were included. The survival group included 18 patients and the death group included 5 patients, with an ICU mortality of 21.7%. The median age in the death group was 64 (64, 72.5) years, which was significantly older than the survival group, with a median age 59 (30.25, 64.25) years (P=0.030). Univariate logistic regression analysis indicated that SOFA score [odds ratio (OR) 1.307, 95% confidential interval (CI) 1.013 - 1.686, P=0.039], decreased hemoglobin (OR 0.845, 95%CI 0.715 - 0.997, P=0.046), and high blood urea nitrogen (BUN) (OR 1.432, 95%CI 1.044 - 1.963, P=0.026) were independent risk factors for hospital mortality. Compared with influenza A pneumonia, patients with severe influenza B pneumonia had more complications (60.0% vs. 87.0%, P=0.023). Conclusions The mortality of severe influenza B virus-associated pneumonia with was high. Increased SOFA score, anemia, and high BUN were risk factors for ICU mortality of severe influenza B infection in adults.
Objective To investigate the physiological effects of different oxygen injection site on ventilatory status and oxygenation during noninvasive positive pressure ventilation ( NPPV) with portable noninvasive ventilators. Methods A prospective crossover randomized study was performed. Oxygen injection site was randomized into the outlet of the ventilator, the connection site between mask and circuit, and the mask under the condition of leak port immobilized in the mask. Oxygen flow was retained in the baseline level at the initial 5 to 10 minutes, and adjusted to obtain arterial oxygen saturation measured by pulse oximetry ( SpO2 ) ranging from 90% to 95% after SpO2 remains stable. SpO2 at the initial 5 to 10 minutes, oxygen flow, ventilatory status, oxygenation, hemodynamics and dyspnea indexes at0. 5 hour, 1 hour, and 2 hours of NPPV were compared between different oxygen injection sites. Results 10 patients were recruited into the study. Under the condition of the same oxygen flow, SpO2 with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit [ ( 98.9 ±0.9) % vs. ( 96.9 ±1.1) % , P =0. 003] , whereas SpO2 with oxygen injection site in the connection site between mask and circuit was significantly higher than that with oxygen injection site in the mask [ ( 96.9 ±1.1) % vs. ( 94.1 ±1.6) %, P = 0.000] . Oxygen flow with oxygen injection site in the mask was statistically higher than that with oxygen injection site at other sites ( P lt; 0.05) . Arterial oxygen tension/ oxygen flow with oxygen injection site in the outlet of the ventilator was significantly higher than that with oxygen injection site in the connection site between mask and circuit ( 67.9 ±31.1 vs. 37.0 ±15.0, P =0.007) , and than that with oxygen injection site in the mask ( 67.9 ± 31.1 vs. 25.0 ±9.1, P = 0.000) . pH, arterial carbon dioxide tension, hemodynamics and dyspnea indexes were not significantly different between different oxygen injection sites ( P gt; 0.05) .Conclusions When portable noninvasive ventilator was applied during NPPV, oxygen injection site significantly affects improvement of oxygenation, and shows a trend for affecting ventilatory status and work of breathing. When the leak port was immobilized in the mask, the nearer oxygen injection site approaches the outlet of the ventilator, the more easily oxygenation is improved and the lower oxygen flow is demanded.
高频通气(HFV)是一种高通气频率和低潮气量的通气方式,其通气频率至少为机体正常呼吸频率的4倍,而潮气量近于或小于解剖死腔。其主要类型包括:高频正压通气、高频喷射通气和高频振荡通气等。其中,高频振荡通气(HFOV)是目前公认的最先进高频通气技术,在临床中应用最广泛。