west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "simulation" 81 results
  • Application of three-dimensional simulation technique in the thoracoscopic lobectomy

    ObjectiveTo analyze the effect of 3D simulation technique in thoracoscopic lobectomy.MethodsFrom June 2015 to January 2018, 124 patients with left lower lobe resection underwent thoracoscopy with single-port thoracoscopic surgery, including 64 males and 60 females, aged 42–83 years. They were randomly divided into two groups including an experimental group (preoperatively given 3D simulation surgery in 59 patients) and a control group (preoperatively not given 3D simulation surgery in 65 patients). The clinical effect between the two groups was compared.ResultsAll patients recovered without any death during hospitalization. In the experimental group, the operation time, intraoperative blood loss and postoperative hospital stay were significantly less than those in the control group (P<0.05). There was no significant difference in postoperative drainage volume, and duration of drainage tube retention and analgesic drug usage between the two groups (P>0.05).Conclusion3D simulation technique for thoracoscopic lobectomy has advantage in short operation time, minor trauma and quick recovery. It has a guiding role in the preoperative planning of lung cancer surgery and is worthy of popularization and application.

    Release date:2019-07-17 04:28 Export PDF Favorites Scan
  • Simulation study of spinal cord stimulation evoked compound action potential

    Spinal cord stimulation (SCS) for pain is usually implanted as an open loop system using unchanged parameters. To avoid the under and over stimulation caused by lead migration, evoked compound action potentials (ECAP) is used as feedback signal to change the stimulating parameters. This study established a simulation model of ECAP recording to investigate the relationship between ECAP component and dorsal column (DC) fiber recruitment. Finite element model of SCS and multi-compartment model of sensory fiber were coupled to calculate the single fiber action potential (SFAP) caused by single fiber in different spinal cord regions. The synthetized ECAP, superimposition of SFAP, could be considered as an index of DC fiber excitation degree, because the position of crests and amplitude of ECAP corresponds to different fiber diameters. When 10% or less DC fibers were excited, the crests corresponded to fibers with large diameters. When 20% or more DC fibers were excited, ECAP showed a slow conduction crest, which corresponded to fibers with small diameters. The amplitude of this slow conduction crest increased as the stimulating intensity increased while the amplitude of the fast conduction crest almost remained unchanged. Therefore, the simulated ECAP signal in this paper could be used to evaluate the degree of excitation of DC fibers. This SCS-ECAP model may provide theoretical basis for future clinical application of close loop SCS base on ECAP.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Research progress overview and prospects of post-disaster psychological first aid training based on virtual simulation technology

    With the post-disaster psychological crisis has aroused wide attention, psychological first aid which can relieve psychological trauma and prevent post-traumatic disorder has been valued by many countries. However, mainly domestic psychological first aid training is simply theoretical training while its popularizing rate is low, it is urgent to learn from international experience to carry out more effective psychological first aid training. In the context of combination of medicine and industry, the paper majorly embodied virtual simulation’s potential in improving psychological intervention ability, deep learning level and self-efficacy. Furthermore, the paper analyzed and illustrated theoretical basis and function module of constructing psychological first aid training platform in detail, and prospected further improvement, which laid foundations for follow-up studies.

    Release date:2024-11-27 02:45 Export PDF Favorites Scan
  • A study of magnetic shielding design for a magnetic resonance imaging linac system

    One of the main technical challenges when integrating magnetic resonance imaging (MRI) systems with medical linear accelerator is the strong interference of fringe magnetic fields from the MRI system with the electron beams of linear accelerator, making the linear accelerator not to work properly. In order to minimize the interference of magnetic fields, a magnetic shielding cylinder with an open structure made of high permeability materials is designed. ANSYS Maxwell was used to simulate Helmholtz coil which generate uniform magnetic field instead of the fringe magnetic fields which affect accelerator gun. The parameters of shielding tube, such as permeability, radius, length, side thickness, bottom thickness and fringe magnetic fields strength are simulated, and the data is processed by MATLAB to compare the shielding performance. This article gives out a list of magnetic shielding effectiveness with different side thickness and bottom thickness under the optimal radius and length, which showes that this design can meet the shielding requirement for the MRI-linear accelerator system.

    Release date:2017-12-21 05:21 Export PDF Favorites Scan
  • Research progress of coarse-grained molecular dynamics in drug carrier materials

    As one of the traditional computer simulation techniques, molecular simulation can intuitively display and quantify molecular structure and explain experimental phenomena from the microscopic molecular level. When the simulation system increases, the amount of calculation will also increase, which will cause a great burden on the simulation system. Coarse-grained molecular dynamics is a method of mesoscopic molecular simulation, which can simplify the molecular structure and improve computational efficiency, as a result, coarse-grained molecular dynamics is often used when simulating macromolecular systems such as drug carrier materials. In this article, we reviewed the recent research results of using coarse-grained molecular dynamics to simulate drug carriers, in order to provide a reference for future pharmaceutical preparation research and accelerate the entry of drug research into the era of precision drug design.

    Release date: Export PDF Favorites Scan
  • Numerical simulation study of fracture mechanics of the atherosclerotic plaque

    Atherosclerotic plaque rupture is the main cause of many cardiovascular diseases, and biomechanical factors play an important role in the process of plaque rupture. In the study of plaque biomechanics, there are relatively few studies based on fatigue fracture failure theory, and most of them mainly focus on the whole fatigue propagation process from crack initiation to plaque rupture, while there are few studies on the influence of crack on plaque rupture at a certain time in the process of fatigue propagation. In this paper, a two-dimensional plaque model with crack was established. Based on the theory of fracture mechanics and combined with the finite element numerical simulation method, the stress intensity factor (SIF) and related influencing factors at the crack tip in the plaque were studied. The SIF was used to measure the influence of crack on plaque rupture. The results show that the existence of crack can lead to local stress concentration, which increases the risk of plaque rupture. The SIF at the crack tip in the plaque was positively correlated with blood pressure, but negatively correlated with fibrous cap thickness and lipid pool stiffness. The effect of the thickness and angle of lipid pool on the SIF at the crack tip in the plaque was less than 4%, which could be ignored. This study provides a theoretical basis for the risk assessment of plaque rupture with cracks.

    Release date:2022-02-21 01:13 Export PDF Favorites Scan
  • Exploration of the application of virtual simulation technology in neurobiology experimental teaching

    The application of virtual simulation technology in the field of teaching has gradually received widespread attention both domestically and internationally. The National Virtual Simulation Experimental Teaching Project Shared Service Platform (iLAB-X) has emerged, providing a good platform and support for the teaching reform of experimental courses in universities. There are many difficulties in traditional experimental teaching of neurobiology. This article combines the teaching content of neurobiology experimental courses, fully explores and utilizes the virtual simulation resources of iLAB-X, and introduces the experimental teaching case design of the virtual real combination mode. It can enable students to have an immersive experience of arcane neurobiological experiments, help to understand and absorb theoretical knowledge, stimulate students’ interest and curiosity, and improve the teaching effectiveness of neurobiology experimental courses.

    Release date:2025-04-27 01:50 Export PDF Favorites Scan
  • Application and development trends of population pharmacokinetic techniques in virtual clinical trials

    Population pharmacokinetics is a research technique based on computer simulation and data analysis, and it has been employed to investigate the dynamic behavior of drug metabolism in different populations. This approach could address practical challenges such as prolonged clinical trial durations, high costs, and increased difficulty in traditional clinical trials. By comprehensively analyzing differences in the internal drug metabolism processes across populations with varying physiological and pathological conditions, population pharmacokinetics has emerged as an effective method to optimize drug development and clinical applications. This article provides a preliminary overview of the essence of population pharmacokinetics, its application in clinical trials, and potential future trends. We hope to serve as a reference and guidance for the application of new technologies and methods in clinical trials.

    Release date:2024-09-20 01:01 Export PDF Favorites Scan
  • Development of a culture chamber for mechanical loading of adherent cells with large uniform strain

    Based on the current study of the influence of mechanical factors on cell behavior which relies heavily on experiments in vivo, a culture chamber with a large uniform strain area containing a linear motor-powered, up-to-20-Hz cell stretch loading device was developed to exert mechanical effects on cells. In this paper, using the strain uniformity as the target and the substrate thickness as the variable, the substrate bottom of the conventional incubation chamber is optimized by using finite element technique, and finally a new three-dimensional model of the incubation chamber with “M” type structure in the section is constructed, and the distribution of strain and displacement fields are detected by 3D-DIC to verify the numerical simulation results. The experimental results showed that the new cell culture chamber increased the accuracy and homogeneous area of strain loading by 49.13% to 52.45% compared with that before optimization. In addition, the morphological changes of tongue squamous carcinoma cells under the same strain and different loading times were initially studied using this novel culture chamber. In conclusion, the novel cell culture chamber constructed in this paper combines the advantages of previous techniques to deliver uniform and accurate strains for a wide range of cell mechanobiology studies.

    Release date:2022-12-28 01:34 Export PDF Favorites Scan
  • Progress in numerical simulation and experimental study on inhalable particles deposition in human respiratory system

    Inhalable particles deposition in the human respiratory system is the main cause of many respiratory and cardiovascular diseases. It plays an important role in related disease prevention and treatment through establishing computer or external entity models to study rules of particle deposition. The paper summarized and analyzed the present research results of various inhalable particle deposition models of upper respiratory tract and pulmonary area, and expounded the application in the areas of disease inducement analysis, drug inhale treatment etc. Based on the review, the paper puts forward the problems and application limitations of present research, especially pointing out future emphasis in development directions. It will have a value of reference guidance for further systematic and in-depth study on the inhalable particle deposition simulation, experiment and application.

    Release date:2017-08-21 04:00 Export PDF Favorites Scan
9 pages Previous 1 2 3 ... 9 Next

Format

Content