west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "spinal cord" 47 results
  • Effect of lentivirus-mediated small interfering RNA on mitogen- and stress-activated protein kinase 1 in spinal cord injury of rats

    ObjectiveTo investigate the expression changes and the repair effect of mitogen and stress- activated protein kinase 1 (MSK1) on spinal cord injury (SCI) in rats.MethodsOne hundred and twenty male Sprague Dawley (SD) rats (weighing 220-250 g) were used for the study, 70 of them were randomly divided into sham-operation group and SCI group (n=35), the rats in SCI group were given SCI according to Allen’s method, and the sham-operation group only opened the lamina without injuring the spinal cord; spinal cord tissue was collected at 8 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days after invasive treatment, each group of 5 rats was used to detect the expression of MSK1 and proliferating cell nuclear antigen (PCNA) by Western blot assay. Another 20 SD rats were grouped by the same method as above (n=10). In these rats, a negative control lentiviral LV3NC dilution was injected at a depth of approximately 0.8 mm at the spinal cord T10 level. The results of transfection at 1, 3, 5, 7, and 14 days after injection were observed under an inverted fluorescence microscope to determine the optimal transfection time of the virus. The other 30 SD rats were randomly divided into group A with only SCI, group B with a negative control lentiviral LV3NC injected after SCI, and group C with MSK1 small interfering RNA (siRNA) lentivirus injected after SCI, with 10 rats each group. The Basso, Beatlie, Bresnahan (BBB) score of hind limbs was measured at 1, 3, 5, 7, and 14 days after treatment; spinal cord tissue collected at the optimal time point for lentivirus transfection was detected the expression changes of MSK1 and PCNA by Western blot and the localization by immunofluorescence staining of MSK1 and PCNA proteins.ResultsWestern blot assay showed that there was no significant changes in the expression of MSK1 and PCNA at each time points in the sham-operation group. In the SCI group, the expression of MSK1 protein was gradually decreased from 8 hours after injury to the lowest level at 3 days after injury, and then gradually increased; the expression change of PCNA protein was opposite to MSK1. The expression of MSK1 in SCI group was significantly lower than that in the sham-operation group at 1, 2, 3, and 5 days after injury (P<0.05), and the expression of PCNA protein of SCI group was significantly higher than that of the sham-operation group at 8 hours and 1, 2, 3, 5, and 7 days after injury (P<0.05). The fluorescence expression of both the SCI group and the sham-operation group has be found and peaked at 7 days. There was a positive correlation between fluorescence intensity and time in 7 days after transfection. With the prolongation of postoperative time, the BBB scores of groups A, B, and C showed a gradually increasing trend. The BBB score of group C was significantly lower than those of groups A and B at 5, 7, and 14 days after treatment (P<0.05). After transfection for 7 days, Western blot results showed that the relative expression of MSK1 protein in group C was significantly lower than that in groups A and B (P<0.05); and the relative expression of PCNA protein was significantly higher than that in groups A and B (P<0.05). Immunofluorescence staining showed that MSK1 was expressed in the nuclei of the spinal cord and colocalized with green fluorescent protein, neuronal nuclei, and glial fibrillary acidic protein (GFAP). The relative expression area of MSK1 positive cells in group C was significantly higher than that in group B (P<0.05), and the relative expression areas of PCNA and GFAP positive cells were significantly lower than those in group B (P<0.05).ConclusionLentivirus-mediated MSK1 siRNA can effectively silence the expression of MSK1 in rat spinal cord tissue. MSK1 may play a critical role in the repair of SCI in rats by regulating the proliferation of glial cells.

    Release date:2018-07-12 06:19 Export PDF Favorites Scan
  • Research progress of etiologies for C5 palsy after cervical decompression

    ObjectiveTo review the definition and possible etiologies for C5 palsy. MethodsThe literature on C5 palsy at home and abroad in recent years was extensively reviewed, and the possible etiologies were analyzed based on clinical practice experience. ResultsThere are two main theories (nerve root tether and spinal cord injury) accounting for the occurrence of C5 palsy, but both have certain limitations. The former can not explain the occurrence of C5 palsy after anterior cervical spine surgery, and the latter can not explain that the clinical symptoms of C5 palsy is often the motor dysfunction of the upper limb muscles. Based on the previous reports, combining our clinical experience and research, we propose that the occurrence of C5 palsy is mainly due to the instrumental injury of anterior horn of cervical spinal cord during anterior cervical decompression. In addition, the C5 palsy following surgery via posterior approach may be related to the nerve root tether caused by the spinal cord drift after decompression. ConclusionIn view of the main cause of C5 palsy after cervical decompression, it is recommended to reduce the compression of the spinal cord by surgical instruments to reduce the risk of this complication.

    Release date:2022-03-22 04:55 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON BONE MARROW MESENCHYMAL STEM CELLS SEEDED IN CHITOSAN-ALGINATE SCAFFOLDS FOR REPAIRING SPINAL CORD INJURY

    Objective To investigate tissue engineered spinal cord which was constructed of bone marrow mesenchymal stem cells (BMSCs) seeded on the chitosan-alginate scaffolds bridging the both stumps of hemi-transection spinal cord injury (SCI) in rats to repair the acute SCI. Methods BMSCs were separated and cultured from adult male SD rat. Chitosan-alginate scaffold was produced via freeze drying, of which the structure was observed by scanning electron microscope (SEM) and the toxicity was determined through leaching l iquor test. Tissue engineered spinal cord was constructed by seeding second passage BMSCs on the chitosan-alginate scaffolds (1 × 106/mL) in vitro and its biocompatibil ity was observed under SEM at 1, 3, and 5 days. Moreover, 40 adult female SD rats were made SCI models by hemi-transecting at T9 level, and were randomly divided into 4 groups (each group, n=10). Tissue engineered spinal cord or chitosan-alginate scaffolds or BMSCs were implanted in groups A, B, and C, respectively. Group D was blank control whose spinal dura mater was sutured directly. After 1, 2, 4, and 6 weeks of surgery, the functional recovery of the hindl imbs was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotor rating score. Other indexes were tested by wheat germ agglutinin-horseradish peroxidase (WGA-HRP) retrograde tracing, HE staining and immunofluorescence staining after 6 weeks of surgery. Results Chitosan-alginate scaffold showed three-dimensional porous sponge structure under SEM. The cells adhered to and grew on the surface of scaffold, arranging in a directional manner after 3 days of co-culture. The cytotoxicity of chitosan-alginate scaffold was in grade 0-1. At 2, 4, and 6 weeks after operation, the BBB score was higher in group A than in other groups and was lower in group D than in other groups; showing significant differences (P lt; 0.05). At 4 and 6 weeks, the BBB score was higher in group B than in group C (P lt; 0.05). After 6 weeks of operation, WGA-HRP retrograde tracing indicated that there was no regenerated nerve fiber through the both stumps of SCI in each group. HE and immunofluorescence staining revealed that host spinal cord and tissue engineering spinal cord l inked much compactly, no scar tissue grew, and a large number of neurofilament 200 (NF-200) positive fibers and neuron specitic enolase (NSE) positive cells were detected in the lesioned area in group A. In group B, a small quantity of scar tissue intruded into non-degradative chitosan-alginate scaffold at the lesion area edge, and a few of NSE flourescence or NF-200 flourescence was observed at the junctional zone. The both stumps of SCI in group C or group D were filled with a large number of scar tissue, and NSE positive cells or NF-200 positive cells were not detected. Otherwise, there were obviously porosis at the SCI of group D. Conclusion The tissue engineered spinal cord constructed by multi-channel chitosan-alginate bioscaffolds and BMSCs would repair the acute SCI of rat. It would be widely appl ied as the matrix material in the future.

    Release date:2016-08-31 05:47 Export PDF Favorites Scan
  • Incidence of spinal cord injury in patients with acute type A aortic dissection after expanding the landing zone of frozen elephant trunk: A retrospective study in a single center

    ObjectiveTo assess whether expanding the landing zone of frozen elephant trunk (FET) increases the risk of spinal cord injury in patients with acute type A aortic dissection. MethodsPatients with acute type A aortic dissection who were treated in Guangdong Provincial People’s Hospital from 2017 to 2020 were collected. They were divided into two groups according to the landing zone of FET by the image diagnosis of postoperative chest X-ray or total aorta CT angiography, including a Th9 group which defined as below the eighth thoracic vertebral level, and a Th8 group which was defined as above or equal to the eighth thoracic vertebral level. Using the propensity score matching (PSM) method, the preoperative and intraoperative data of two groups were matched with a 1∶2 ratio. The prognosis of the two groups after PSM was analyzed. Results Before PSM, 573 patients were collected, including 58 patients in the Th9 group and 515 patients in the Th8 group. After PSM, 174 patients were collected, including 58 patients in the Th9 group (46 males and 12 females, with an average age of 47.91±9.92 years), and 116 patients in the Th8 group (93 males and 23 females, with an average age of 48.01±9.53 years). There were 8 patients of postoperative spinal cord injury in the two groups after PSM, including 5 (4.31%) patients in the Th8 group and 3 (5.17%) patients in the Th9 group (P=0.738). In the Th8 group, 2 patients had postoperative transient paresis and recovered spontaneously after symptomatic treatment, and 1 patient had postoperative paraplegia with cerebrospinal fluid drainage. After 3 days, the muscle strength of both lower limbs gradually recovered after treatment. There was no statistical difference in complications between the two groups (P>0.05). ConclusionExpanding the landing zone of FET does not increase the risk of spinal cord injury in patients with acute type A aortic dissection. However, the sample size is limited, and in the future, multicenter large-scale sample size studies are still needed for verification

    Release date:2023-12-10 04:52 Export PDF Favorites Scan
  • Selective control of hindlimb movements based on intraspinal functional electronic stimulation

    Functional electronic stimulation (FES) may provide a means to restore motor function in patients with spinal cord injuries. The goal of this study is to determine the regions in the spinal cord controlling different hindlimb movements in the rats. Normalization was used for the regions dominating the corresponding movements. It has been verified that FES can be used in motor function recovery of the hindlimb. The spinal cord was stimulated by FES with a three-dimensional scan mode in experiments. The results show that stimulation through the electrodes implanted in the ventral locations of the lumbosacral enlargement can produce coordinated single- and multi-joint hindlimb movements. A variety of different hindlimb movements can be induced with the appropriate stimulation sites, and movement vectors of the hindlimb cover the full range of movement directions in the sagittal plane of the hindlimb. This article drew a map about spinal cord motor function of the rat. The regions in the spinal cord which control corresponding movements are normalized. The data in the study provide guidance about the location of electrode tips in the follow-up experiments.

    Release date:2019-02-18 02:31 Export PDF Favorites Scan
  • MORPHOLOGICAL CHANGES AND ELECTROPHYSIOLOGICAL STUDY OF MOTOR NEURON OF SPINAL CORD FOLLOWING DELAYED REPAIR OF PERIPHERAL NERVE INJURY

    OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • SEQUENTIAL EXPRESSION OF HYPOXIA-INDUCIBLE FACTOR 1α AND ITS SIGNIFICANCE IN SECONDARY SPINAL CORD INJURY

    Objective To investigate the expression pattern of hypoxia-inducible factor 1α (HIF-1α) in experimental secondary spinal cord injury (SSCI) in rats and its potential effects on SSCI. Methods A total of 66 SD rats (female or male) with weight (250 ± 20) g were randomly divided into 3 groups: normal control group (group A, n=6), pseudo injury group (group B, n=6), and spinal cord injury (SCI) group (group C, n=54). In group A, no treatment was given as normal control. In groupB, only laminectomy was appl ied. In group C, laminectomy was appl ied and static compression model of SCI was built at T10 level. The expression of HIF-1α was measured with HE and immunohistochemical staining in groups A, B (1 hour after pseudo injury), and C (1, 3, 6, 12 hours and 1, 2, 3, 7, 14 days after SCI). Results All rats survived to the end of the experiment. HE staining showed that the spinal tissue of groups A and B were dense and the nucleus were round and big with l ight staining and clear nucleolus. The injured neuron at 1-12 hours after SCI of group C presented pyknosis and deep eosin staining. The swelling axon with bubbles and the disintegrated and disorganized medullary sheath in white matter appeared at 1-3 days after SCI. The hyperplasia of gl ial cells were obvious and gray matter cells were broken and apoptosis with cavities in injured spinal segment was observed at 7 and 14 days after SCI. Immunohistochemical staining showed that HIF-1α was poorly expressed in group A and increased a l ittle in group B. The positive expression in group C increased at 3 hours after SCI, which was found in spinal cord anterior horn neurons and a small amount of gangl ion cells. It reached peak at 1 day, maintained at a high level during 1-3 days and then decl ined. At 14 days, it appeared only in a small amount of gangl ion cells of white matter. There was no significant difference in the number of HIF-1α positive cells between groups A and B (t=1.325, P=0.137). The number of HIF-1α positive cells at each time point in group C was more than those in groups A and B (P lt; 0.05), and there were significant differences between all time points in group C (P lt; 0.05). Conclusion The expression of HIF-1α increases after SCI, it is related to the ischemia hypoxia after SSCI, and the expression pattern was correlated with the injury time.

    Release date:2016-08-31 05:41 Export PDF Favorites Scan
  • Research progress on perioperative management of thoraco-abdominal aortic aneurysm surgery

    The surgical treatment of thoraco-abdominal aortic aneurysm (TAAA) requires a unique multidisciplinary approach. A thorough preoperative examination and evaluation are essential to determine the optimal timing for surgery and to optimize organ function as needed. During the perioperative period, excellent surgical skills and an appropriate strategy for extracorporeal circulation will be employed based on the extent of the aneurysm. Additionally, necessary measures will be taken to monitor and protect the functions of vital organs. Close monitoring and management in the postoperative stage, along with early detection of complications and effective treatment, are crucial for improving the prognosis of TAAA surgery. This article reviews the current research progress in the perioperative management of TAAA surgery.

    Release date:2025-01-21 11:07 Export PDF Favorites Scan
  • Perioperative Nursing of Spinal Cord Arteriovenous Malformation

    摘要:目的: 探讨脊髓动静脉畸形患者科学的围手术期护理方法。 方法 :对31例脊髓动静脉畸形围术期患者进行了科学的护理,即心理,术前、术后以及特殊症状护理,并分析护理效果。 结果 :31例患者中治愈27例,好转4例。 结论 :脊髓动静脉畸形手术难度大,危险性高,科学的围手术期护理是促进治疗效果的重要保证。Abstract: Objective: To discuss the effectiveness of scientific perioperative nursing for the patients with spinal arteriovenous malformations. Methods : 31 patients with spinal arteriovenous malformations had got nursing, such as psychology nursing and special perioperative symptoms. The nursing effective is analysed. Results : 27 cases are cured and the other 4 cases improved. Conclusion : Spinal arteriovenous malformations is difficult and dangerous for operation.The scientific perioperative nursing is important guarantee for advancing the cure effective.

    Release date:2016-09-08 10:12 Export PDF Favorites Scan
  • FACTORS TO AFFECT SEVERITY OF HYPEREXTENSION INJURY OF CERVICAL SPINAL CORD

    Objective To explore the factors to affect severity of hyperextension injury of the cervical spinal cord (HEICSC). Methods Forty-five patients with HEICSC, 35 males and 10 females, aged 27-67 years old (mean 48.2 years old), were retrospectively analyzed. The disease course was 30 minutes to 16 days. According to modified Frankel grading, there were 6 cases of grade A, 8 cases of grade B, 16 cases of grade C and 15 cases of grade D. Spinal cord injuries (SCI) segments were determined according to SCI plane and high signal change (HSC) in spinal cord on MR images. The whole or large part of HSC segments were supposed to be main injured spinal cord segments (MISCSs) and the staccato or patchy HSC ones were supposed to be common injured spinal cord segments (CISCSs). When the external force acting on head or face suffered was larger, the force produced during high-speed movement or forehead and/or face had severe contused and/or) lacerated wound, the force was defined severe traumatic strength, whereas the reverse was true for sl ight traumatic strength. According to signal magnitude of the cervical discs on T2-weighted MR images, degeneration of cervical discs and cervical vertebras were classified into 5 grades: grade 0-4. Cervical spinal stenosis were graded to 5 grades according to the width of anterior or posterior cerebrospinal fluid layer to spinal cord on T2-weighted MR images and compressed degree of spinal cord on T1-weighted MR images. The influence of traumatic strength, cervical spinal degeneration or cervical spinal stenosis on SCI were explored. Results Among the 45 cases, 12 cases were caused by sl ight traumatic strength, 33 cases were caused by severe one. The cervical spinal cord was injuried more sl ightly and the patients were older in the sl ight traumatic strength cases than in the severe ones (P lt; 0.05). The number of MISCSs were 45 in 40 cases and the 25 segments were located at C3, 4 level. The number of CISCSs were 39 in 21 cases. All the cervical vertebraes of the 45 patients had degenerated. The most were in grade 3 in 22 patients and the severest degenerative segments were mostly located in C5,6 discs in 35 ones. The number of the MISCSs in different degenerative grades of discs was 0 in grade 0, 9 in grade 1, 20 in grade 2, 14 in grade 3, and 2 in grade 4. The ratios of the segment number of injuried spinal cord to the segment number of spinal stenosis in every grade of stenosis were 1/62 in grade 0, 2/11 in grade 1, 27/52 in grade 2, 33/33 in grade 3, 21/22 in grade 4. Conclusion Three main factors including the magnitude of traumatic strength, the degree of instabil ity of cervical vertebrae and the degree of cervical stenosis contribute to development and progress of HEICSC.

    Release date:2016-09-01 09:08 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content