rough the ultramicroscopic observation on muscle and microcirculation, Group A,where a largeamount of DXM combined with heporin was given svstematically and locally into the femoral artery of the severed limb before replantation, and in Group B only heporin was given, and Group C and D ascontrol.The results showed that if the hormone and heparin were administred in large dosage, it wasadvantageous to reduce the tissues from reperfusion injury during delayed replantation.
Objective To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. Methods The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Results Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineeringapplication. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. Conclusion The nanostructured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation,and this kind of scaffold has a considerable value in the tissue engineering field.
Objective To observe the enzymic histochemical and ultrastructral changes of cryopreserved human retina. Methods To compare the activity of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and ATPase in cryopreserved retina with those in fresh retina and to observe the histological and ultrastructural changes of cryopreserved retina. Results There was no statistical difference between the activity of LDH,SDH and ATPase in fresh and in cryopreserved retina. Histologically, in the cryopreserved retina, fluid in neural fiber and outer plexiform layers, as well as in cone and rod layer, was sligthly more than normal. The ultrastructure is normal except that the mitochondria was swollen in different degree. Conclusion Cryopreservation may be an effective method for keeping the retinal cells alive for a long period and might free the transplantation from dependance on aviability of fresh dornor tissue. (Chin J Ocul Fundus Dis,2000,16:139-212)
Objective To observe the morphological changes of dendrite and soma in retinal ganglion cells (RGCs) which subsisted in early diabetic rats. Methods The RGCs of 3-months-course diabetic rats and coeval normal rats were marked by gene gun techniques. To collect RGCs photographs by Leica microscope with Z axis and CCD camera;to observe the changes of diameter, variance of structural features in dendritic field and somata after classification which according to the size and morphology. Thy-1 antibody marks on the retinal RGCs, taking a photograph under fluorescent microscope, counting the changes of retinal RGCs density in early diabetic rat. Results In three-month diabetic rats,the density of retinal RGCs was decreased obviously. Morphological changes of RGCs in the dendritic fields were observed with gene gun technique. There was no severe variation in all kinds of the bole of cell dendrite, in which some only showed crispation partially and sparseness also twisting in the dendritic ramus. The mean diameter of dendritic field and soma in class A of diabetic rats was (401plusmn;86) mu;m, the mean diameter of dendritic field in control group was (315plusmn;72) mu;m,compared with each other, there is statistically significant differences (t=21.249,Plt;0.001); the mean diameter of soma in class A of diabetic rats was (24plusmn;6) mu;m, the mean diameter of soma in control group was (22plusmn;5) mu;m, compared with each other, there is no statistically significant differences (t=0.927,Pgt;0.05); the mean diameter of dendritic field and soma in class B of diabetic rats were (170plusmn;36)、(14plusmn;2) mu;m respectively, in control group were (165plusmn;36)、(16plusmn;2) mu;m, the mean diameter of dendritic field and soma in class C of diabetic group were(265plusmn;78)、(17plusmn;5) mu;m respectively, in control group were (251plusmn;57)、(17plusmn;4) mu;m , compared with each other, there are on statistically significant differences(t=1.357,0.798,0.835,1.104,Pgt;0.05). Conclusions In short-term diabetes, the survived RGCs show good plasticity in adult diabetic rats, especially in class A. The changes of dendrites were more sensitive than the soma, which could be the leading index of the morphologic changes of RGCs in the early stage. The good plasticity showed by the RGCs and the time window from changing in dendrite to cell death provide us many evidences not only for the research but also for the nerve protection in clinic. (Chin J Ocul Fundus Dis,2008,24:249-254)
Objective To investingate the ultrastructural changes of retinal pigment epithelium(RPE) and its permeability in spontaneously hypertensive rats(SHR)and explore the relation between these changes and hypertensive retinopathy.MethodsThe ultrastructure of RPE cells in the SHR aged five,six,seven months wasobserved with transmission electronmicroscope and compared to its normotensive control strain(WKY) with the same age.Then,lanthanum tracer procedures were carried out to investigate pathological changes of the blood-retinal barrier.Results (1)In SHR the main pathological changes involved swelling of mitochondria,enlargement of endoplasmic reticula,decrease of RPE cell infolding,and sparseness of microvilli.These degenerations were more serious in older rats with higher blood pressure.(2)The breakdown of outer blood-retinal barrier with permeation of lanthanum tracers were evident in SHR aged six or seven month,however,in WKY and five-month SHR the traces were prevented from passing by tight junctions.ConclusionThe degeneration of RPE owing to ischemia and anoxia arises in early periosd of hypertensive retinopathy.The pathological changes of ultrastructure and permeability might interact with the damage of visual cells and play a main role in the hypertensive retinopathy.
Objective To investigate the effect of anti-seizure medications (ASMs) pregabalin (PGB) monotherapy on sleep structure and quality of patients with focal epilepsy. MethodsAdult patients whom newly diagnosed focal epilepsy were collected and treated with PGB monotherapy. The main outcome measures were the changes of polysomnography and video-electroencephalography (PSG-VEEG), Pittsburgh Sleep Quality Index (PSQI), Insomnia Severity Index (ISI) and Epworth Sleepiness Scale (ESS) in epilepsy patients with PGB and baseline. Results PGB improved significantly sleep structural parameters, including increased total sleep time (P<0.001), decreased sleep latency (P<0.001), improved sleep efficiency (P<0.001), reduced wake time after sleep onset (P<0.001), increased sleep maintenance efficiency (P<0.001) and proportion of N3 sleep stage (P<0.001). In the group with poor sleep efficiency, 86.7% of patients achieved sleep efficiency>85% after PGB treatment. The difference was statistically significant (P<0.01). PGB reduced significantly PSQI score (P<0.001) and ISI score (P<0.001). No significant change in ESS score was observed (P>0.05). ConclusionsPGB could enhance slow-wave sleep (SWS), increase sleep quality and improve insomnia in patients with epilepsy without causing daytime sleepiness.
Objective To isolate,culture and expand bone marrow mesenchymal stem cells (MSCs) in vitro,induce MSCs to differentiate directionally towards chondrocytes,and provide experimental basis for clinical application of MSCs and construction of tissue engineering tracheal cartilage. Methods Cultured MSCs were isolated from bone marrow of Sprague-Dawley rats,purified using adherence separation,and identified by flow cytometry analysis. Transforming growth factor β1 (TGF-β1)and insulin-like growth factor 1 (IGF-1) were used as main induction factors to induce MSCs to differentiate directionally towards chondrocytes. The expression of collagen typeⅡwas evaluated by immunocytochemical staining 21 days after induction. Light microscope and electron microscope were used to observe tiny and ultrastructural changes of the cells before and after induction. Results The expression of collagen typeⅡwas positive by immunocytochemical staining 21 days after induction. MSCs were fusiform before induction under light microscope and electron microscope. After induction,the cells became larger,polygon,star-shaped or triangular. Transmission electron microscope showed that the cells had abundant organelles,larger nuclei and more nucleoli after induction. Conclusion Abundant organelles,larger nuclei and more nucleoli are the ultrastructure changes of chondrocytes differentiated from MSCs,indicating that the cells are active in differentiation and metabolism.
Objective To study the global and histological changes of myopia and explore its pathogenic mechanism. Methods Chicks were reared with monocular suture of eyelid. When myopia had been confirmed by optometry, eyeballs were removed and subjected subsequently to measurement and light and electron microscopies. Results Three dimensions in the eyeballs of suture group were all enlarged markedly and the mean diopter was -15.00D. Under the light microscope, rod outer segment elongated and connected With PREC in suture group. With micrometer measure, cartilaginous sclera thickened and retina became thinner. Under electron microscope, rod outer segment elongated and membrane disc was intact. In the cytoplasm of RPEC, the phagosomes containing fractions of the membrane disc of outer segment were remarkably decreased. Conclusion Early form deprivation may affect the drop of membrane disc and cause eyeball enlargement; thus, myopia forms. (Chin J Ocul Fundus Dis,1999,15:20-23)
Objective:To observe the intervention effect of the tetra methylpyraz ine on the rds mice with retinitis pigmentosa. Methods:A total of 84 rds mice were randomly divided into 2 groups, with 42 mice in each group. The mice in the experimental group underwent intraperitoneal cavity injection with hydrochlor i c tetramethylpyrazine (80 mg/kg, twice per day) at the date of birth and till 35 days after birth, whereas the normal saline was injected into the intraperito n eal cavity of rats in the control group. The mice were sacrificed 0, 3, 7, 14, 2 1, 28, 35 days after birth, and the eyeballs were enucleated for the routine pat hologic examination with the light microscope. The apoptosis of photoreceptor ce ll nuclei was detected by terminal deoxynucleotidyl transferasemediated dUTP n i ck endlabeling (TUNEL) technigue and the expression of bcl2 in retina was de tect by immunohistochemistry method. Results:The results of li ght microscopy s howed that the layer number of retinal photoreceptor cell nuclei with tetramethy lpyrazine treatment was increased 14, 21, 28, 35 days after the treatment compar ed with that in the control group(P<0.01). The results of electron-micro scope suggested that tetramethylpyrazine might reduce lesions in the photoreceptor cells and the destruction of the disc member, mitochondrion,and outer limiting me mbrane in the photoreceptor outer segment in rds mice. The apoptosis of the phot oreceptor cell nuclei reduced in rds mice 3, 7, 14, 21, 28 and 35 days after the treatment compared with that in the control group (P<0.01). The express ion of bcl-2 in the matrix of retinal photoreceptor cell nuclei and its inner and o u ter segments increased significantly in rds mice 3,7, 14, 21, 28 and 35 days af ter the treatment (P<0.05). Conclusions:Tetramethylpyra zine might reduce ret inal photoreceptor apoptosis by upregulating the expression of bcl-2 in the m at rix of retinal photoreceptor cell nuclei or its inner and outer segments in rds mice.
Objective To automatically segment diabetic retinal exudation features from deep learning color fundus images. Methods An applied study. The method of this study is based on the U-shaped network model of the Indian Diabetic Retinopathy Image Dataset (IDRID) dataset, introduces deep residual convolution into the encoding and decoding stages, which can effectively extract seepage depth features, solve overfitting and feature interference problems, and improve the model's feature expression ability and lightweight performance. In addition, by introducing an improved context extraction module, the model can capture a wider range of feature information, enhance the perception ability of retinal lesions, and perform excellently in capturing small details and blurred edges. Finally, the introduction of convolutional triple attention mechanism allows the model to automatically learn feature weights, focus on important features, and extract useful information from multiple scales. Accuracy, recall, Dice coefficient, accuracy and sensitivity were used to evaluate the ability of the model to detect and segment the automatic retinal exudation features of diabetic patients in color fundus images. Results After applying this method, the accuracy, recall, dice coefficient, accuracy and sensitivity of the improved model on the IDRID dataset reached 81.56%, 99.54%, 69.32%, 65.36% and 78.33%, respectively. Compared with the original model, the accuracy and Dice index of the improved model are increased by 2.35% , 3.35% respectively. Conclusion The segmentation method based on U-shaped network can automatically detect and segment the retinal exudation features of fundus images of diabetic patients, which is of great significance for assisting doctors to diagnose diseases more accurately.