A three-dimensional (3D) transrectal ultrasound (TRUS) imaging system is presented in this paper. The 3D imaging system is used for diagnosing diseases of prostate. The 3D image is reconstructed by a series of two-dimensional image data which is obtained through rectum. It can be a guide to prostate needle biopsies. The system is built by two parts: hardware and software. In the hardware, the mechanical device, stepper motor, control circuit, B Mode TRUS and personal computer (PC) workshop are presented. The software includes the firmware of micro control unit and software of the PC workshop. In order to evaluate the performance of the 3D imaging system, we did experiments with water and agar phantoms, and the results demonstrated the system's ability of 3D imaging with high-precision.
Collagen is a kind of natural biomedical material and collagen based three-dimensional porous scaffolds have been widely used in skin tissue engineering. However, these scaffolds do not meet the requirements for artificial skin substitutes in terms of their poor mechanical properties, short supply, and rejection in the bodies. All of these factors limit their further application in skin tissue engineering. A variety of methods have been chosen to meliorate the situation, such as cross linking and blending other substance for improving mechanical properties. The highly biomimetic scaffolds either in structure or in function can be prepared through culturing cells and loading growth factors. To avoid the drawbacks of unsafety attributing to animals, investigators have fixed their eyes on the recombinant collagen. This paper reviews the the progress of research and application of collagen-based 3-dimensional porous scaffolds in skin tissue engineering.
In recent years, three-dimensional (3D) technology has been more and more widely used in the auxiliary diagnosis and treatment of structural heart disease (SHD), and is also an important basis for the application of other technologies such as artificial intelligence. However, there are still some problems to be solved in the clinical application of 3D technology. In this paper, the application of 3D technology in SHD field is reviewed, and the future development of 3D technology is prospected.
ObjectiveTo investigate the clinical effect of 3D computed tomography bronchial bronchography and angiography (3D-CTBA) and guidance of thoracoscopic anatomic pulmonary segmentectomy by Mimics software system. MethodsA retrospective analysis was performed on patients who underwent thoracoscopic segmentectomy in the Department of Thoracic Surgery of Affiliated People's Hospital of Jiangsu University from June 2020 to December 2022. The patients who underwent preoperative 3D-CTBA using Materiaise's interactive medical image control system (Mimics) were selected as an observation group, and the patients who did not receive 3D-CTBA were selected as a control group. The relevant clinical indicators were compared between the two groups. ResultsA total of 59 patients were included, including 29 males and 30 females, aged 25-79 years. There were 37 patients in the observation group, and 22 patients in the control group. The operation time (163.0±48.7 min vs. 188.8±43.0 min, P=0.044), intraoperative blood loss [10.0 (10.0, 20.0) mL vs. 20.0 (20.0, 35.0) mL, P<0.001], and preoperative puncture localization rate (5.4% vs. 31.8%, P=0.019) in the observation group were better than those in the control group. There was no statistically significant difference in the thoracic tube placement time, thoracic fluid drainage volume, number of intraoperative closure nail bin, postoperative hospital stay, or postoperative air leakage incidence (P>0.05) between the two groups. ConclusionFor patients who need to undergo anatomical pulmonary segmentectomy, using Mimics software to produce 3D-CTBA before surgery can help accurately identify pulmonary arteriovenous anatomy, reduce surgical time and intraoperative blood loss, help to determine the location of nodules and reduce invasive localization before surgery, and alleviate patients' pain, which is worthy of clinical promotion.
More and more relevant research results show that anatomical segmentectomy has the same effect as traditional lobectomy in the surgical treatment of early-stage non-small cell lung cancer (diameter<2.0 cm). Segmentectomy is more difficult than lobotomy. Nowadays, with the promotion of personalization medicine and precision medicine, three-dimensional technique has been widely applied in the medical field. It has advantages such as preoperative simulation, intraoperative positioning, intraoperative navigation, clinical teaching and so on. It plays a key role in the discovery of local anatomical variation of pulmonary segment. This paper reviewed the clinical application of three-dimensional technique and briefly described the clinical application value of this technique in segmentectomy.
ObjectiveTo investigate feasibility and safety of laparoscopic liver resection with vascular variation.MethodsThe clinical data of one patient with preoperative diagnosis of primary liver cancer, who was admitted into the Department of Hepatobiliary Surgery of the Second Affiliated Hospital of Army Military University in October 2017, were analyzed retrospectively. The three-dimensional (3D) reconstruction was completed basing on the preoperative CT data, then the liver volume was calculated and the preoperative planning was made, finally the subsequent surgery was performed.ResultsThe results of the 3D reconstruction suggested that the tumor was situated in the central of the right liver, including the segment Ⅴ, Ⅵ, Ⅶ, and Ⅷ. There was a type Ⅱ portal vein variation, the right anterior branch of the portal vein divided a branch into the left medial lobe. The right hepatic vein was divided into the ventral and dorsal branches. There was a thick right posterior inferior vein in this case. The preoperative planning was that the right posterior lobectomy or right anterior lobectomy could not completely remove the tumor. According to the standard right hemihepatectomy, the remaining liver volume accounted for 27% of the standard liver volume. If preserving the right anterior branch of the portal vein for the right hemihepatectomy, the remaining liver volume accounted for 41% of the standard liver volume. According to the concept of precise hepatectomy, the laparoscopic partial right hepatectomy with preservation of the main branch of the right anterior portal vein was performed smoothly. The liver function recovered well after the surgery. The right pleural effusion appeared after the surgery, then was relieved by the thoracentesis.ConclusionFor primary liver cancer patient with vascular variation, laparoscopic liver resection is feasible and safe basing on guide of 3D reconstruction technology.
Large defects of jaw caused by tumor, trauma and so on in oral and maxillofacial region lead to facial deformity, language and chewing dysfunction, which severely damage the patient’s life quality. Three-dimensional printing (3DP) is also named additive manufacturing (AM), which can print materials layer by layer to create three-dimensional objects. The complex shape of jaw defects can be accurately reconstructed using 3DP scaffold combined with image data, computer-aided-design and manufacture. It has specific advantages compared with traditional way of jaw reconstruction and has attracted much attention in the field of jaw tissue engineering recently. This article presented the progress of 3DP scaffold and its application in jaw reconstruction, providing a new idea for jaw reconstruction.
Objective To introduce a novel comprehensive classification for femoral intertrochanteric fractures, and to accommodate the clinical requirement for the world-wide outbreak of geriatric hip fractures and surgical operations. Methods On the basis of reviewing the history of classification of femoral intertrochanteric fractures and analyzing the advantages and disadvantages of AO/Orthopaedic Trauma Association (AO/OTA) classification in different periods, combined with the current situation of extensive preoperative CT scan and three-dimensional reconstruction and widespread use of intramedullary nail fixation in China, the “Elderly Hip Fracture” Research Group of the Reparative and Reconstructive Surgery Committee of the Chinese Rehabilitation Medical Association proposed a novel comprehensive classification for femoral intertrochanteric fractures, focusing on the structure of fracture stability reconstruction during internal fixation. Results The novel comprehensive classification of femoral intertrochanteric fractures incorporates multiple indicators of fracture classification, including the orientation of the fracture line, the degree of fracture fragmentation, the lesser trochanteric bone fragment and its distal extension length (>2 cm), the posterior coronal bone fragment and its anterior extension width (involving the lateral cortex of the head and neck implant entry point), transverse fracture of the lateral and anterior wall and its relationship with the implant entry point in the head and neck, and whether the cortex of the anteromedial inferior corner can be directly reduced to contact, etc. The femoral intertrochanteric fractures are divided into 4 types (type A1 is simple two-part fractures, type A2 is characterized by lesser trochanter fragment and posterior coronal fractures, type A3 is reverse obliquity and transverse fractures, type A4 is medial comminution which lacks anteromedial cortex transmission of compression force), each of which is subdivided into 4 subtypes and further subdivide into finer subgroups. In a review of 550 trochanteric hip fracture cases by three-dimensional CT, type A1 accounted for 20.0%, type A2 for 62.5%, type A3 for 15.5%, and type A4 for 2.0%, respectively. For subtypes, A2.2 is with a “banana-like” posterior coronal fragment, A2.4 is with distal cortex extension >2 cm of the lesser trochanter and anterior cortical expansion of the posterior coronal fragment to the entry portal of head-neck implants, A3.4 is a primary pantrochanteric fracture, and A4.4 is a concomitant ipsilateral segmental fracture of the neck and trochanter region. ConclusionThe novel comprehensive classification of femoral intertrochanteric fractures can describe the morphological characteristics of fractures in more detail, include more rare and complex types, provide more personalized subtype selection, and adapt to the clinical needs of both fractures and surgeries.
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
ObjectiveTo investigate the correlation between glenohumeral joint congruence and stability in recurrent shoulder dislocations. Methods Eighty-nine patients (89 sides) with recurrent shoulder dislocation admitted between June 2022 and June 2023 and met the selection criteria were included as study subjects. There were 36 males and 53 females with an average age of 44 years (range, 20-79 years). There were 40 cases of left shoulder and 49 cases of right shoulder. The shoulder joints dislocated 2-6 times, with an average of 3 times. The three-dimensional models of the humeral head and scapular glenoid were reconstructed using Mimics 20.0 software based on CT scanning images. The glenoid track (GT), inclusion index, chimerism index, fit index, and Hill-Sachs interval (HSI) were measured, and the degree of on/off track was judged (K value, the difference between HSI and GT). Multiple linear regression was used to analyze the correlation between the degree of on/off track (K value) and inclusion index, chimerism index, and fit index. ResultsMultiple linear regression analysis showed that the K value had no correlation with the inclusion index (P>0.05), and was positively correlated with the chimerism index and the fit index (P<0.05). Regression equation was K=–24.898+35.982×inclusion index+8.280×fit index, R2=0.084. ConclusionHumeral head and scapular glenoid bony area and curvature are associated with shoulder joint stability in recurrent shoulder dislocations. Increased humeral head bony area, decreased scapular glenoid bony area, increased humeral head curvature, and decreased scapular glenoid curvature are risk factors for glenohumeral joint stability.