Objective To investigate the effectiveness of using 3 hollow compression screws combined with 1 screw off-axis fixation under the guidance of three-dimensional (3D) printed guide plate with mortise-tenon joint structure (mortise-tenon joint plate) for the treatment of Pauwels type Ⅲ femoral neck fractures. Methods A clinical data of 78 patients with Pauwels type Ⅲ femoral neck fractures, who were admitted between August 2022 and August 2023 and met the selection criteria, was retrospectively analyzed. The operations were assisted with mortise-tenon joint plates in 26 cases (mortise-tenon joint plate group) and traditional guide plates in 28 cases (traditional plate group), and without guide plates in 24 cases (control group). There was no significant difference in the baseline data of gender, age, body mass index, cause of injury, and fracture side between groups (P>0.05). The operation time, intraoperative blood loss, frequency of intraoperative fluoroscopy, incision length, incidence of postoperative deep vein thrombosis of lower extremity, pain visual analogue scale (VAS) score at 1 week after operation, and Harris score of hip joint at 3 months after operation were recorded and compared. X-ray re-examination was taken to check the quality of fracture reduction, fracture healing, and the shortening length of the femoral neck at 3 months after operation, and the incidences of internal fixation failure and osteonecrosis of the femoral head during operation. Results Compared with the control group, the operation time, intraoperative blood loss, and frequency of intraoperative fluoroscopy reduced in the two plate groups, and the quality of fracture reduction was better, but the incision was longer, and the differences were significant (P<0.05). The operation time and intraoperative blood loss were significantly higher in the traditional plate group than in the mortise-tenon joint plate group (P<0.05), the incision was significantly longer (P<0.05); and the difference in fracture reduction quality and the frequency of intraoperative fluoroscopy was not significant between two plate groups (P>0.05). There was 1 case of deep vein thrombosis of lower extremity in the traditional plate group and 1 case in the control group, while there was no thrombosis in the mortise-tenon joint plate group. There was no significant difference in the incidence between groups (P>0.05). All patients were followed up 12-15 months (mean, 13 months). There was no significant difference in VAS score at 1 week and Harris score at 3 months between groups (P>0.05). Compared with the control group, the fracture healing time and the length of femoral neck shortening at 3 months after operation were significantly shorter in the two plate groups (P<0.05). There was no significant difference between the two plate groups (P>0.05). There was no significant difference in the incidences of non-union fractures, osteonecrosis of the femoral head, or internal fixation failure between groups (P>0.05). Conclusion For Pauwels type Ⅲ femoral neck fractures, the use of 3D printed guide plate assisted reduction and fixation can shorten the fracture healing time, reduce the incidence of postoperative complications, and be more conducive to the early functional exercise of the affected limb. Compared with the traditional guide plate, the mortise-tenon joint plate can reduce the intraoperative bleeding and shorten the operation time.
Objective To explore the role and effectiveness of three-dimensional (3D) printing technology based on 3D multimodality imaging in surgical treatment of malignant bone tumors of limbs. Methods The clinical data of 15 patients with malignant bone tumors of the limbs who met the selection criteria between January 2016 and January 2019 were retrospectively analyzed. There were 6 males and 9 females, with a median age of 34 years (range, 17-73 years). There were 5 cases of osteosarcoma, 3 cases of chondrosarcoma, 2 cases of Ewing sarcoma, 1 case of hemangiosarcoma, 1 case of ameloblastoma, and 3 cases of metastatic carcinoma. The tumors were located in the humerus in 5 cases, ulna in 2 cases, femur in 3 cases, and tibia in 5 cases. The disease duration was 2-8 months (median, 4 months). Preoperative 3D multimodality imaging was administered first, based on which computer-assisted preoperative planning was performed, 3D printed personalized special instruments and prostheses were designed, and in vitro simulation of surgery was conducted, successively. Two cases underwent knee arthroplasty, 2 had semi-shoulder arthroplasty, 2 had proximal ulna arthroplasty, and 9 had joint-preserving surgery. Surgical margins, operation time, intraoperative blood loss, surgical complications, Musculoskeletal Tumor Society (MSTS) score, and oncological outcome were collected and analyzed. Results All 15 patients completed the operation according to the preoperative plan, and the surgical margins were all obtained wide resection margins. The operation time was 80-240 minutes, with a median of 150 minutes. The intraoperative blood loss was 100-400 mL, with a median of 200 mL. There was no significant limitation of limb function due to important blood vessels or nerves injury during operation. One case of superficial infection of the incision was cured after dressing change, and the incisions of the other patients healed by first intention. All patients were followed up 6-48 months, with a median of 24 months. Two of the patients died of lung metastasis at 6 and 24 months after operation, respectively. No local recurrence, prosthesis dislocation, or prosthesis loosening occurred during follow-up. At last follow-up, the MSTS score ranged from 23 to 30, with an average of 25. Conclusion3D printing tecnology, based on 3D multimodality imaging, facilitates precise resection and reconstruction for malignant bone tumors of limbs, resulting in improved oncological and functional outcome.
Objective To explore the application of individualized transiliac crest nail-grafting guide plate prepared by computer-aided design and three-dimensional (3D) printing technology in deep pelvic external fixator implantation. Methods Five patients with pelvic fractures were collected between May 2017 and February 2018. There were 4 females and 1 male with an average age of 52 years (range, 29-68 years). Pelvic fractures were classified as type B in 3 cases and type C in 2 cases by Tile classification. The interval between injury and operation was 6-14 days (mean, 9 days). The preoperative CT images of pelvic fractures were collected. The data was reconstructed by 3D imaging reconstruction workstation. An individualized transiliac crest nail-grafting guide plate was designed on the virtual 3D model. The individualized transiliac crest nail-grafting guide plate and the solid pelvic model were produced with the 3D printing technology. The individualized transiliac crest nail-grafting guide plate was used for intraoperative deep pin position on iliac crest after the preoperative simulation. The follow-up CT scans were used to determine the differences in distance from anterior superior iliac spine, convergence angle, and caudal angle between the preoperative plan and postoperative measurement. Results During the operation, the individualized transiliac crest nail-grafting guide plate was used to guide the placement of 20 pins. X-ray film and CT examination showed that all pins were well positioned. The average depth of pins was 83.16 mm (range, 70.13-100.53 mm). Fitted 3D reconstruction images showed that the entry point and orientation of the pins were all consistent with preoperative schemes. Compared with the planned nail path, there was no significant difference in the distance from anterior superior iliac spine, convergence angle, and caudal angle in the actual nail path (P>0.05). No loosening and rupture of pin, no damage of blood vessels and nerve, and shallow or deep infection occurred during 3 months follow-up, and the incisions healed by first intention. All patients were satisfied with the treatment process. The ranges of motion of hip and knee were normal, and the visual analogue scale (VAS) score was 0-3 (mean, 0.5). Conclusion The individualized transiliac crest nail-grafting guide plate technique is the improvement of traditional technique. It can increase accuracy and effective depth of pin position, enable patients to obtain pelvic mechanical stability quickly after operation, and reduce the risk of complications related to nail path.
Objective To manufacture a poly (lactic-co-glycolic acid) (PLGA) scaffold by low temperature deposition three-dimensional (3D) printing technology, prepare a PLGA/decellularized articular cartilage extracellular matrix (DACECM) cartilage tissue engineered scaffold by combining DACECM, and further investigate its physicochemical properties. Methods PLGA scaffolds were prepared by low temperature deposition 3D printing technology, and DACECM suspensions was prepared by modified physical and chemical decellularization methods. DACECM oriented scaffolds were prepared by using freeze-drying and physicochemical cross-linking techniques. PLGA/DACECM oriented scaffolds were prepared by combining DACECM slurry with PLGA scaffolds. The macroscopic and microscopic structures of the three kinds of scaffolds were observed by general observation and scanning electron microscope. The chemical composition of DACECM oriented scaffold was analyzed by histological and immunohistochemical stainings. The compression modulus of the three kinds of scaffolds were measured by biomechanical test. Three kinds of scaffolds were embedded subcutaneously in Sprague Dawley rats, and HE staining was used to observe immune response. The chondrocytes of New Zealand white rabbits were isolated and cultured, and the three kinds of cell-scaffold complexes were prepared. The growth adhesion of the cells on the scaffolds was observed by scanning electron microscope. Three kinds of scaffold extracts were cultured with L-929 cells, the cells were cultured in DMEM culture medium as control group, and cell counting kit 8 (CCK-8) was used to detect cell proliferation. Results General observation and scanning electron microscope showed that the PLGA scaffold had a smooth surface and large pores; the surface of the DACECM oriented scaffold was rough, which was a 3D structure with loose pores and interconnected; and the PLGA/DACECM oriented scaffold had a rough surface, and the large hole and the small hole were connected to each other to construct a vertical 3D structure. Histological and immunohistochemical qualitative analysis demonstrated that DACECM was completely decellularized, retaining the glycosaminoglycans and collagen typeⅡ. Biomechanical examination showed that the compression modulus of DACECM oriented scaffold was significantly lower than those of the other two scaffolds (P<0.05). There was no significant difference between PLGA scaffold and PLGA/DACECM oriented scaffold (P>0.05). Subcutaneously embedded HE staining of the three scaffolds showed that the immunological rejections of DACECM and PLGA/DACECM oriented scaffolds were significantly weaker than that of the PLGA scaffold. Scanning electron microscope observation of the cell-scaffold complex showed that chondrocytes did not obviously adhere to PLGA scaffold, and a large number of chondrocytes adhered and grew on PLGA/DACECM oriented scaffold and DACECM oriented scaffold. CCK-8 assay showed that with the extension of culture time, the number of cells cultured in the three kinds of scaffold extracts and the control group increased. There was no significant difference in the absorbance (A) value between the groups at each time point (P>0.05). Conclusion The PLGA/DACECM oriented scaffolds have no cytotoxicity, have excellent physicochemical properties, and may become a promising scaffold material of tissue engineered cartilage.
ObjectiveTo explore the application of three-dimensional (3D) printing technology in precise and individualized surgical treatment of severe distal humeral bone defect.MethodsFive patients with severe distal humeral bone defects were treated with customized 3D printing prostheses between December 2010 and December 2015. There were 4 males and 1 female, with an age of 23-57 years (mean, 35 years); and the length of the bone defect was 5-12 cm (mean, 8 cm). The cause of injury was mechanical injury in 2 cases and strangulation in 3 cases. All of them were the open fracture of Gustilo type Ⅲ. There were 2 cases of radial fracture, 1 case of cubital nerve injury, and 3 cases of radial nerve injury. The time from injury to one-stage operation was 6-18 hours (mean, 10 hours). The operation time, intraoperative blood loss, and intraoperative fluoroscopy were recorded. During follow-up, the anteroposterior and lateral X-ray films of the elbow joints were performed to identify whether there was prosthesis loosening; Mayo Elbow Performance Score (MEPS) and upper extremity Enneking score were used to evaluate limb function.ResultsThe operation time was 140-190 minutes (mean, 165 minutes). The intraoperative blood loss was 310-490 mL (mean, 415 mL). The intraoperative fluoroscopy was 1-3 times (mean, 1.6 times). Five patients were followed up 14-38 months (mean, 21 months). The wound exudate occurred in 1 case and cured after anti-inflammatory local dressing change; the subcutaneous hematoma occurred in 1 case, and improved after color Doppler ultrasound guided puncture and drainage. The MEPS scores and the Enneking scores were all significantly improved when compared with preoperative ones (P<0.05). Except MEPS score between 6 and 12 months after operation had no significant difference (P>0.05), there were significant differences in MEPS scores and Enneking scores between the other time points (P<0.05). During the follow-up, no prosthetic loosening or joint dislocation occurred.Conclusion3D printing technology can achieve personalized treatment of severe distal humeral bone defects, obtain relatively good elbow joint function, and has less postoperative complications and satisfactory effectiveness.
Objective To explore the feasibility and the effectiveness of the accurate placement of lumbar pedicle screws using three-dimensional (3D) printing navigational templates in Quadrant minimally invasive system. Methods The L1-5 spines of 12 adult cadavers were scanned using CT. The 3D models of the lumbar spines were established. The screw trajectory was designed to pass through the central axis of the pedicle by using Mimics software. The navigational template was designed and 3D-printed according to the bony surface where the soft tissues could be removed. The placed screws were scanned using CT to create the 3D model again after operation. The 3D models of the designed trajectory and the placed screws were registered to evaluate the placed screws coincidence rate. Between November 2014 and November 2015, 31 patients with lumbar instability accepted surgery assisted with 3D-printing navigation module under Quadrant minimally invasive system. There were 14 males and 17 females, aged from 42 to 60 years, with an average of 45.2 years. The disease duration was 6-13 months (mean, 8.8 months). Single segment was involved in 15 cases, two segments in 13 cases, and three segments in 3 cases. Preoperative visual analogue scale (VAS) was 7.59±1.04; Oswestry disability index (ODI) was 76.21±5.82; and the Japanese Orthopaedic Association (JOA) score was 9.21±1.64. Results A total of 120 screws were placed in 12 cadavers specimens. The coincidence rate of placed screw was 100%. A total of 162 screws were implanted in 31 patients. The operation time was 65-147 minutes (mean, 102.23 minutes); the intraoperative blood loss was 50-116 mL (mean, 78.20 mL); and the intraoperative radiation exposure time was 8-54 seconds (mean, 42 seconds). At 3-7 days after operation, CT showed that the coincidence rate of the placed screws was 98.15% (159/162). At 4 weeks after operation, VAS, ODI, and JOA score were 2.24±0.80, 29.17±2.50, and 23.43±1.14 respectively, showing significant differences when compared with preoperative ones (t=14.842,P=0.006;t=36.927,P=0.002;t=–36.031,P=0.001). Thirty-one patients were followed up 8-24 months (mean, 18.7 months). All incision healed by first intention, and no complication occurred. During the follow-up, X-ray film and CT showed that pedicle screw was accurately placed without loosening or breakage, and with good fusion of intervertebral bone graft. Conclusion 3D-printing navigational templates in Quadrant minimally invasive system can help lumbar surgery gain minimal invasion, less radiation, and accurate placement.
Objective To explore the clinical methods of resection of elbow tumor and total elbow replacement with custom personalized prosthesis based on three dimensional (3-D) printing navigation template. Methods In August 2016, a 63-year-old male patient with left elbow joint tumor was treated, with the discovery of the left distal humerus huge mass over 3 months, with elbow pain, activity limitation of admission. Computer-assisted reduction technique combined with 3-D printing was used to simulate preoperative tumor resection, a customized personal prosthesis was developed; tumor was accurately excised during operation, and the clinical result was evaluated after operation. Results The time was 46 minutes for tumor resection, and was 95 minutes for personalized implant and allograft bone without fluoroscopy. X-ray and CT examination at 1 week after operation showed good position of artificial elbow joint; the anteversion of ulna prosthesis was 30° and the elbow carrying angle was 15°, which were consistent with the simulated results before surgery. The finger flexion was normal at 1 month after operation; the range of motion was 0-130° for elbow flexion and extension, 80° for forearm pronation, and 80° for forearm supination. The elbow function was able to meet the needs of daily life at 7 months after operation, and no recurrence and metastasis of tumor were observed. Conclusion For limb salvage of elbow joint, computer aided design can make preoperative surgical simulation; the navigation template can improve surgical precision; and the function of elbow joint can be reconstructed with customized and personlized prosthesis for total elbow replacement.
ObjectiveTo review the current research and application progress of three-dimentional (3D) printed porous titanium alloy after tumor resection, and provide direction and reference for the follow-up clinical application and basic research of 3D printed porous titanium alloy. MethodsThe related literature on research and application of 3D printed porous titanium alloy after tumor resection in recent years was reviewed from three aspects: performance of simple 3D printed porous titanium alloy, application analysis of simple 3D printed porous titanium alloy after tumor resection, and research progress of anti-tumor 3D printed porous titanium alloy. Results3D printing technology can adjust the pore parameters of porous titanium alloy, so that it has the same biomechanical properties as bone. Appropriate pore parameters are conducive to inducing bone growth, promoting the recovery of skeletal system and related functions, and improving the quality of life of patients after operation. Simple 3D printed porous titanium alloy can more accurately match the bone defect after tumor resection through preoperative personalized design, so that it can closely fit the surgical margin after tumor resection, and improve the accuracy and efficiency of the operation. The early and mid-term follow-up results show that its application reduces the postoperative complications such as implant loosening, subsidence, fracture and so on, and enhances the bone stability. The anti-tumor performance of 3D printed porous titanium alloy mainly includes coating and drug-loading treatment of pure 3D printed porous titanium alloy, and some progress has been made in the basic research stage. ConclusionSimple 3D printed porous titanium alloy is suitable for patients with large and complex bone defects after tumor resection, and the anti-tumor effect of 3D printed porous titanium alloy can be achieved through coating and drug delivery.
ObjectiveTo summarize the research progress of tissue engineering technology to promote bone tissue revascularization in osteonecrosis of the femoral head (ONFH).MethodsThe relevant domestic and foreign literature in recent years was extensively reviewed. The mechanism of femoral head vascularization and the application progress of tissue engineering technology in the promotion of ONFH bone tissue revascularization were summarized.ResultsRebuilding or improving the blood supply of the femoral head is the key to the treatment of ONFH. Tissue engineering is a hot spot in current research. It mainly focuses on the three elements of seed cells, scaffold materials, and angiogenic growth factors, combined with three-dimensional printing technology and drug delivery systems to promote the revascularization of the femoral bone tissue.ConclusionThe strategy of revascularization of the femoral head can improve the local blood supply and delay or even reverse the progression of ONFH disease.
Objective To investigate the construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal (3D) printing technology and evaluate its biocompatibility. Methods The fresh pig meniscus was decellularized by improved physicochemical method to obtain decellularized meniscus matrix homogenate. Gross observation, HE staining, and DAPI staining were used to observe the decellularization effect. Toluidine blue staining, safranin O staining, and sirius red staining were used to evaluate the retention of mucopolysaccharide and collagen. Then, the decellularized meniscus matrix bioink was prepared, and the new tissue engineered meniscus scaffold was prepared by low temperature deposition 3D printing technology. Scanning electron microscopy was used to observe the microstructure. After co-culture with adipose-derived stem cells, the cell compatibility of the scaffolds was observed by cell counting kit 8 (CCK-8), and the cell activity and morphology were observed by dead/live cell staining and cytoskeleton staining. The inflammatory cell infiltration and degradation of the scaffolds were evaluated by subcutaneous experiment in rats. Results The decellularized meniscus matrix homogenate appeared as a transparent gel. DAPI and histological staining showed that the immunogenic nucleic acids were effectively removed and the active components of mucopolysaccharide and collagen were remained. The new tissue engineered meniscus scaffolds was constructed by low temperature deposition 3D printing technology and it had macroporous-microporous microstructures under scanning electron microscopy. CCK-8 test showed that the scaffolds had good cell compatibility. Dead/live cell staining showed that the scaffold could effectively maintain cell viability (>90%). Cytoskeleton staining showed that the scaffolds were benefit for cell adhesion and spreading. After 1 week of subcutaneous implantation of the scaffolds in rats, there was a mild inflammatory response, but no significant inflammatory response was observed after 3 weeks, and the scaffolds gradually degraded. Conclusion The novel tissue engineered meniscus scaffold constructed by low temperature deposition 3D printing technology has a graded macroporous-microporous microstructure and good cytocompatibility, which is conducive to cell adhesion and growth, laying the foundation for the in vivo research of tissue engineered meniscus scaffolds in the next step.