Objective To compare the effectiveness of O-arm navigation and ultrasound volume navigation (UVN) in guiding screw placement during minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) surgery. Methods Sixty patients who underwent MIS-TLIF surgery for lumbar disc herniation between June 2022 and June 2023 and met the selection criteria were included in the study. They were randomly assigned to group A (screw placement guided by UVN during MIS-TLIF) or group B (screw placement guided by O-arm navigation during MIS-TLIF), with 30 cases in each group. There was no significant difference in baseline data, including gender, age, body mass index, and surgical segment, between the two groups (P>0.05). Intraoperative data, including average single screw placement time, total radiation dose, and average single screw effective radiation dose, were recorded and calculated. Postoperatively, X-ray film and CT scans were performed at 10 days to evaluate screw placement accuracy and assess facet joint violation. Pearson correlation and Spearman correlation analyses were used to observe the relationship between the studied parameters (average single screw placement time and screw placement accuracy grading) and BMI. Results The average single screw placement time in group B was significantly shorter than that in group A, and the total radiation dose of single segment and multi-segment and the average single screw effective radiation dose in group B were significantly higher than those in group A (P<0.05). There was no significant difference in the total radiation dose between single segment and multiple segments in group B (P>0.05), while the total radiation dose of multiple segments was significantly higher than that of single segment in group A (P<0.05). No significant difference was found in the accuracy of screw implantation between the two groups (P>0.05). In both groups, the grade 1 and grade 2 screws broke through the outer wall of the pedicle, and no screw broke through the inner wall of the pedicle. There was no significant difference in the rate of facet joint violation between the two groups (P>0.05). In group A, both the average single screw placement time and screw placement accuracy grading were positively correlated with BMI (r=0.677, P<0.001; r=0.222, P=0.012), while in group B, neither of them was correlated with BMI (r=0.224, P=0.233; r=0.034, P=0.697). Conclusion UVN-guided screw placement in MIS-TLIF surgery demonstrates comparable efficiency, visualization, and accuracy to O-arm navigation, while significantly reducing radiation exposure. However, it may be influenced by factors such as obesity, which poses certain limitations.
ObjectiveTo observe the difference between crenel lateral interbody fusion (CLIF) and transforaminal lumbar interbody fusion (TLIF) in the treatment of degenerative lumbar spondylolisthesis (DLS) combined with lumbar spinal stenosis (LSS).MethodsThe clinical data of DLS combined with LSS patients meeting the selection criteria admitted between May 2018 and May 2019 were retrospectively analyzed. According to different surgical methods, the patients were divided into CLIF group (33 cases) and TLIF group (32 cases). There were no significant differences (P>0.05) between the two groups in gender, age, disease duration, lesion segments, lumbar bone mineral density, degree of lumbar spondylolisthesis, and preoperative visual analogue scale (VAS) score, Oswestry disability index (ODI), intervertebral space height, intervertebral foramen height, lumbar lordosis (LL), and segmental lordosis (SL). The operation time, intraoperative blood loss, and perioperative complications were recorded and compared between the two groups. Lumbar CT scan was performed at last follow-up to compare the intervertebral fusion rate between the two groups. Intervertebral space height, intervertebral foramen height, LL, and SL were measured before operation, at 2 weeks, 3 months after operation, and at last follow-up. VAS score and ODI were used to evaluate the pain and improvement of the quality of life of the patients.ResultsThere were no neurological and vascular complications in the two groups. The operation time and intraoperative blood loss in CLIF group were significantly less than those in TLIF group (P<0.05). Patients in both groups were followed up for a median time of 18 months. All the incisions healed by first intention except 1 incision in TLIF group because of poor blood glucose control. No complications such as bedsore, falling pneumonia, and deep venous thrombosis were found in both groups. At last follow-up, the intervertebral fusion rates in CLIF and TLIF group were 90.91% (30/33) and 93.75% (30/32), respectively, showing no significant difference (χ2=0.185, P=0.667). The VAS score, ODI, intervertebral space height, intervertebral foramen height, LL, and SL were significantly improved in both groups at each time point after operation (P<0.05). Except that VAS score in CLIF group was significantly lower than that in TLIF group at 2 weeks after operation (Z=−4.303, P=0.000), there were no significant differences in VAS score and ODI between the two groups at other time points (P>0.05). The intervertebral space height, intervertebral foramen height, LL, and SL in CLIF group were significantly higher than those in TLIF group at each time point after operation, and the differences were significant (P<0.05).ConclusionCLIF in the treatment of DLS combined with LSS can achieve the similar effectiveness with traditional TLIF, and has such advantages as minimal invasion and faster recovery.
Objective To compare the mid-term effectiveness of unilateral biportal endoscopy (UBE)-transforaminal lumbar interbody fusion (TLIF) and minimally invasive surgery-transforaminal lumbar interbody fusion (MIS-TLIF) assisted with three-dimensional microscope in the treatment of single-level lumbar spondylolisthesis. Methods A total of 41 single level lumbar spondylolisthesis patients who met the selection criteria were retrospectively collected between June 2018 and September 2019. Twenty-three patients were treated with UBE-TLIF (study group) and 18 with MIS-TLIF assisted with three-dimensional microscope (control group). There was no significant difference in gender, age, Meyerding degree of slippage, type of spondylolisthesis, lesion segment, course of disease, and preoperative hemoglobin (Hb) level, visual analogue scale (VAS) score, Oswestry disability index (ODI), lumbar lordosis (LL), and disc height (DH) between the two groups (P>0.05). The operation time, hospitalization time, intraoperative blood loss, Hb level between preoperative and postoperative at 1 day, and complications were compared between the two groups. The recovery of clinical sign and symptom was evaluated by VAS score and ODI before operation, and at 1 month, 3 months, 1 year, and 3 years after operation. The LL and DH were measured by radiography before operation and at last follow-up, and the fusion rate was calculated according to Suk grade at last follow-up. ResultsAll the operations were successfully completed. There was no significant difference in operation time between the two groups (P>0.05); the hospitalization time, intraoperative blood loss, and Hb difference between pre- and post-operation in the study group were significantly less than those in the control group (P<0.05). Both groups were followed up 36-48 months, with an average of 39.2 months. In the study group, 1 case of dural tear and 2 cases of Cage subsidence occurred, without postoperative infection and epidural hematoma; in the control group, infection occurred in 1 case, dural tear in 2 cases, Cage subsidence in 1 case, and no epidural hematoma occurred; there was no significant difference in the incidence of complications between the two groups (13.04% vs. 22.22%) (χ2=0.601, P=0.438). The VAS score and ODI at each time point after operation in both groups significantly improved when compared with those before operation, and further improved with time (P<0.05). There was no significant difference in VAS scores between the two groups at each time point after operation (P>0.05); the ODI of the study group was significantly lower than that of the control group at 1 and 3 months after operation (P<0.05), and there was no significant difference between the two groups at other time points (P>0.05). The imaging test showed that the intervertebral fusion rates were 95.7% in the study group and 94.4% in the control group at last follow-up, with no significant difference (χ2=0.032, P=0.859). At last follow-up, LL and DH in the two groups significantly improved when compared with those before operation (P<0.05), and the difference between before and after operation showed no significant difference between the two groups (P>0.05). ConclusionBoth UBE-TLIF and MIS-TLIF assisted with three-dimensional microscope have the advantages of clear intraoperative field and high surgical efficiency in treating lumbar spondylolisthesis, and can obtain satisfactory mid-term effectiveness. Compared with MIS-TLIF assisted with three-dimensional microscope, UBE-TLIF has the advantages of less bleeding and faster recovery.
Objective To compare the effectiveness between unilateral biportal endoscopic lumbar interbody fusion (ULIF) and endoscopic transforaminal lumbar interbody fusion (Endo-TLIF) in treatment of lumbar spinal stenosis combined with intervertebral disc herniation. Methods A clinical data of 64 patients with lumbar spinal stenosis and intervertebral disc herniation, who were admitted between April 2020 and November 2021 and met the selection criteria, was retrospectively analyzed. Among them, 30 patients were treated with ULIF (ULIF group) and 34 patients with Endo-TLIF (Endo-TLIF group). There was no significant difference in baseline data such as gender, age, disease duration, lesion segment, preoperative visual analogue scale (VAS) score of low back pain and leg pain, Oswestry disability index (ODI), spinal canal area, and intervertebral space height between the two groups (P>0.05). The operation time, intraoperative blood loss, hospital stays, and postoperative complications were compared between the two groups, as well as the VAS scores of low back pain and leg pain, ODI, and imaging measurement indicators (spinal canal area, intervertebral bone graft area, intervertebral space height, and degree of intervertebral fusion according to modified Brantigan score). Results Compared with the Endo-TLIF group, the ULIF group had shorter operation time, but had more intraoperative blood loss and longer hospital stays, with significant differences (P<0.05). The cerebrospinal fluid leakage occurred in 2 cases of Endo-TLIF group and 1 case of ULIF group, and no other complication occurred. There was no significant difference in the incidence of complications between the two groups (P>0.05). All patients in the two groups were followed up 12 months. The VAS scores of lower back pain and leg pain and ODI in the two groups significantly improved when compared with those before operation (P<0.05), and there was no significant difference between different time points after operation (P>0.05). And there was no significant difference between the two groups at each time point after operation (P>0.05). Imaging examination showed that there was no significant difference between the two groups in the change of spinal canal area, the change of intervertebral space height, and intervertebral fusion rate at 6 and 12 months (P>0.05). The intervertebral bone graft area in the ULIF group was significantly larger than that in the Endo-TLIF group (P<0.05). ConclusionFor the patients with lumbar spinal stenosis combined with intervertebral disc herniation, ULIF not only achieves similar effectiveness as Endo-TLIF, but also has advantages such as higher decompression efficiency, flexible surgical instrument operation, more thorough intraoperative intervertebral space management, and shorter operation time.
ObjectiveTo investigate the effectiveness of modified direction-changeable lumbar Cage in transforaminal lumbar interbody fusion (TLIF).MethodsA retrospective analysis was made of 161 patients with single segment L4 or L5 isthmic spondylolisthesis treated between January 2013 and December 2015. According to the implantation of Cage, they were divided into trial group (85 cases, modified direction-changeable lumbar Cage implanted in TLIF) and control group (76 cases, traditional nondirection-changeable Cage implanted in TLIF). There was no significant difference in the general data of gender, age, disease duration, slippage segment, and slippage grade between the two groups (P>0.05). The intraoperative implantation time of Cage, Cage position adjustments times, fluoroscopy times during implantation of Cage, fluoroscopy exposure time, and total operation time were recorded and compared between the two groups. Visual analogue scale (VAS) and Oswestry disability index (ODI) scores were used to evaluate the effectiveness of the patients before operation, and at 3, 6, and 12 months after operation, and the incidence of complications was recorded and analyzed. CT examinations were performed at 6 and 12 months after operation, and lumbar fusion was evaluated by Bridwell criteria.ResultsThe intraoperative implantation time of Cage, Cage position adjustments times, fluoroscopy times during implantation of Cage, fluoroscopy exposure time, and total operation time in trial group were significant less than those in control group (P<0.05). All the 161 patients were followed up 12-18 months (mean, 14.3 months). There was 1 case of dural sac tear in the trial group and 1 case of superficial infection in the control group; no complication such as dural tear and infection occurred in other patients. The fusion rate was 76.5% (64/85) in the trial group and 57.9% (44/76) in the control group at 6 months after operation, showing significant difference (χ2=6.44, P=0.02); at 12 months after operation, the fusion rate was 96.5% (82/85) in the trial group and 90.8% (69/76) in the control group (including 3 cases of Cage displacement and 4 cases of screw breakage), showing no significant difference in the fusion rate between the two groups (χ2=1.54, P=0.26). The VAS and ODI scores of the two groups decreased gradually at 3, 6, and 12 months after operation, and improved significantly when compared with those before operation (P<0.05). There was no significant difference in VAS and ODI scores between the two groups before and after operation (P>0.05).ConclusionBoth Cages can obtain the similar effectiveness. The modified direction-changeable lumbar Cage can significantly reduce the fluoroscopy times and radiation dose during TLIF, shorten the operation time, and effectively reduce the radiation exposure of patients and medical staff.
Objective To analyze the medium and long-term effectiveness of microendoscope-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for lumbar degenerative diseases in comparison with conventional tubular retractor-assisted MIS-TLIF. Methods Between November 2008 and March 2013, 53 patients with single segment lumbar degenerative diseases were enrolled. According to the different working channel performed, 28 patients were treated by microendoscope-assisted MIS-TLIF (observation group), while the remaining cases received conventional tubular retractor-assisted MIS-TLIF via Wiltse approach (control group). Preoperative baseline data, including age, gender, body mass index, disease etiology, operated level, the ration for requiring bilateral canal decompression, and preoperative visual analogue scale (VAS) socre of low back pain and leg pain, Japanese Orthopedic Association (JOA) score, Oswestry disability index (ODI) score, showed no significant difference between the two groups (P>0.05). The operation time, intraoperative blood loss, intraoperative fluoroscopy time, postoperative analgesic drug dose, postoperation in-bed time, and perioperative complication incidence were recorded respectively and compared between the two groups. Radiographic evaluation of interbody fusion was performed based on Bridwell grading system at 2 years after operation. VAS scores of low back pain and leg pain, JOA score, and ODI score were assessed before operation, at 2 years after operation, and at last follow-up respectively. Surgical outcome satisfaction was assessed by modified MacNab criteria at last follow-up. Results When compared with those in control group, both intraoperative blood loss and postoperative analgesic drug dose were significantly decreased in observation group (P<0.05); similarly, the operation time and intraoperative fluoroscopy time were also significantly increased in observation group (P<0.05). There was no significant difference of postoperative in-bed time between the two groups (t=–0.812, P=0.420). Both groups were followed up 6-10.3 years, with an average of 7.9 years. Regarding perioperative complication, its incidence was 14.3% and 20.0% in observation group and control group, respectively, showing no significant difference between both groups (χ2=0.306, P=0.580). Specifically, there were intraspinal hematoma formation in 1 case, incision infection in 1 case, urinary infection in 1 case, transient delirium in 1 case in observation group. By contrast, there were dural tear and cerebrospinal fluid leakage in 1 case, urinary infection in 1 case, pneumonia in 1 case, transient delirium in 2 cases in control group. Bridwell criterion was used to judge the intervertebral fusion at 2 years after operation, the fusion rates of observation group and control group were 92.9% and 92.0%, respectively, showing no significant difference (χ2=0.162, P=0.687). At both 2-year postoperatively and last follow-up, the VAS scores of low back pain and leg pain, JOA score, and ODI score were significantly improved when compared with those before operation (P<0.01), whereas no significant difference between the two groups at either time point was found (P>0.05). At last follow-up, the results of patients’ satisfaction with surgery evaluated by modified MacNab criteria, and the excellent and good rates of the observation group and the control group were 96.4% and 92.0%, respectively, showing no significant difference (χ2=0.485, P=0.486). Conclusion The medium and long-term effectiveness of microendoscope-assisted MIS-TLIF are similar to those of conventional tubular retractor-assisted MIS-TLIF for lumbar degenerative diseases. The former operation has the additional advantages in terms of more clear surgical site visually, less intraoperative blood loss, and reduced postoperative analgesic dose, all of which seem more feasible to clinical teaching.
ObjectiveTo explore the fusion effect of allograft Cages on transforaminal lumbar interbody fusion (TLIF).MethodsThe clinical data of 30 patients (38 vertebral segments) who underwent TLIF with allograft interbody fusion Cages between January 2015 and January 2017 were retrospectively analysed. There were 25 males and 5 females with an average age of 56.9 years (range, 44-72 years). The lesions included 20 cases of lumbar disc herniation, 7 cases of lumbar spondylolisthesis, and 3 cases of lumbar spinal stenosis. The operation section included 4 cases of L3, 4, 13 cases of L4, 5, 5 cases of L5, S1, 6 cases of L4, 5-L5, S1, and 2 cases of L3, 4-L4, 5. The disease duration was 6-36 months (mean, 12 months). The clinical effectiveness was evaluated by visual analogue scale (VAS) score, Oswestry disability index (ODI), and Japanese Orthopaedic Association (JOA) score at preoperation, 3 months and 6 months after operation, and last follow-up. The fusion rate was evaluated by anteroposterior and lateral X-ray films and CT three-dimensional reconstruction at 3 and 6 months after operation. The intervertebral space height was measured on anteroposterior and lateral X-ray films at preoperation, 3 days, 3 months, and 6 months after operation.ResultsThe operation time was 2.1-4.3 hours (mean, 3.1 hours), and the intraoperative blood loss was 150-820 mL (mean, 407.5 mL). The follow-up time was 8-25 months (mean, 16.4 months). One Cage split at 6 months after operation without Cage movement and neurologic symptoms; none of the other patients had Cage prolapse, displacement, and fragmentation. No local or systemic allergy or infection signs was found in all patients. No nerve compression or symptoms was observed during the follow-up. The postoperative VAS score, ODI score, and JOA score improved significantly when compared with preoperative scores (P<0.05); and the scores at 6 months and at last follow-up were significantly improved when compared with those at 3 months after operation (P<0.05); but no significant difference was found between at 6 months and at last follow-up (P>0.05). The fusion rate was 55.3% (21/38), 92.1% (35/38), and 100% (38/38) at 3 months, 6 months, and last follow-up postoperatively. The intervertebral space height was increased significantly at 3 days, 3 months, 6 months, and last follow-up postoperatively when compared with preoperative ones (P<0.05); and the loss of intervertebral space height was significant at last follow-up when compared with postoperative at 3 days (P<0.05).ConclusionThe allograft interbody fusion Cage contributes to the spine interbody fusion by providing an earlier stability and higher fusion rate.
ObjectiveTo explore the risk factors of coronal imbalance after posterior long-level fixation and fusion for degenerative lumbar scoliosis.MethodsRetrospectivly analyzed the clinical records of 41 patients with degenerative lumbar scoliosis who had received posterior long-level fixation and fusion with selective transforaminal lumbar interbody fusion (TLIF) accompanied by Ponte osteotomy between August 2011 and July 2016. Patients were divided into imbalance group (group A, 11 cases) and balance group (group B, 30 cases) according to state of coronal imbalance measured at last follow-up. The radiographic parameters at preoperation and last follow-up were measured, and the variance of preoperative and last follow-up parameters were calculated. The radiographic parameters included coronal Cobb angle, coronal balance distance (CBD), apical vertebral translation (AVT), apical vertebral rotation (AVR), Cobb angle of lumbar sacral curve (LSC), and L5 tilt angle (L5TA). Univariate analysis was performed for the factors including gender, age, preoperative T value of bone mineral density, number of instrumented vertebra, upper and lower instrumented vertebra, segments of TLIF, decompression, and Ponte osteotomy, as well as the continuous variables of preoperative imaging parameters with significant difference were converted into two-category variables, obtained the influence factors of postoperative coronal imbalance. Multivariate logistic regression analysis was performed to verify the risk factors from the preliminary screened influence factors and the variance of imaging parameters with significant difference between the two groups.ResultsThe follow-up time of groups A and B was (3.76±1.02) years and (3.56±1.03) years respectively, there was no significant difference between the two groups (t=0.547, P=0.587). The coronal Cobb angle, AVT, LSC Cobb angle, and L5TA in group A were significantly higher than those in group B before operation (P<0.05), and all the imaging parameters in group A were significantly higher than those in group B at last follow-up (P<0.05). There was no significant difference between the two groups in parameters including the variance of coronal Cobb angle, AVT, and LSC Cobb angle before and after operation (P>0.05), and there were significant differences between the two groups in parameters including the variance of CBD, L5TA, and AVR (P<0.05). Univariate analysis showed that preoperative L5TA was the influencing factor of postoperative coronal imbalance (P<0.05). Multivariate logistic regression analysis showed that preoperative L5TA≥15° was an independent risk factor of postoperative coronal imbalance, and variance of pre- and post-operative AVR was a protective factor.ConclusionPreoperative L5TA≥15° is an independent risk factor for coronal imbalance in patients with degenerative lumbar scoliosis after posterior long-level fixation and fusion.
Objective To compare the effectiveness of percutaneous endoscopic transforaminal lumbar interbody fusion (PE-TLIF) and Wiltse-approach TLIF (W-TLIF) in the treatment of lumbar spondylolisthesis. MethodsThe clinical data of 47 patients with lumbar spondylolisthesis who met the selection criteria between July 2018 and June 2019 were retrospectively analyzed, in which 21 patients were treated with PE-TLIF (PE-TLIF group) and 26 patients were treated with W-TLIF (W-TLIF group). There was no significant difference between the two groups in age, gender, disease duration, level of spondylolisthesis vertebrae, spondylolisthesis degree, spondylolisthesis type, and preoperative visual analogue scale (VAS) score of low back pain and leg pain, lumbar Japanese Orthopaedic Association (JOA) score, and the disc height (DH), segmental lordosis (SL), and Taillard index (TI) of the operated vertebrae (P>0.05). The operation time, intraoperative blood loss, postoperative drainage, postoperative bedridden time, and complications were compared between the two groups. The VAS score and JOA score were used to evaluate the improvement of pain and function. At last follow-up, DH, SL, and TI of operated vertebrae were measured by X-ray films, and lumbar CT was performed to evaluate the interbody fusion. Results Compared with W-TLIF group, the operation time in PE-TLIF group was significantly longer, but the intraoperative blood loss and postoperative drainage were significantly less, and the postoperative bedridden time was significantly shorter (P<0.05). There were 2 cases of transient lower limb radiating pain in PE-TLIF group and 1 case of superficial incision infection in W-TLIF group. There was no significant difference in the incidence of complications (9.5% vs. 3.8%) between the two groups (χ2=0.037, P=0.848). The patients in both groups were followed up 12-24 months, with an average of 17.3 months in PE-TLIF group and 17.7 months in W-TLIF group. The VAS scores of low back pain and leg pain, and the JOA scores of the two groups significantly improved at each time point after operation when compared with those before operation (P<0.05). Compared with W-TLIF group, the VAS scores of low back pain in PE-TLIF group significantly lower at 3 days and 3 months after operation (P<0.05), and the JOA score of PE-TLIF group was significantly higher at 3 months after operation (P<0.05), and there was no significant difference in each score at any other time point between the two groups (P>0.05). At last follow-up, the DH, SL, and TI of operated vertebrae of the two groups significantly improved when compared with those before operation (P<0.05), and there was no significant difference in the differences of each parameter between the two groups (P>0.05). According to Suk’s standard, the fusion rates of PE-TLIF group and W-TLIF group were 90.5% (19/21) and 92.3% (24/26), respectively, with no significant difference (χ2=0.000, P=1.000). At last follow-up, there was no case of Cage sunk into the adjacent vertebral body, or dislodgement of Cage anteriorly or posteriorly in both groups. Conclusion PE-TLIF and W-TLIF are both effective in the treatment of grade Ⅰ and Ⅱ lumbar spondylolisthesis. Although the operation time is prolonged, PE-TLIF has less intraoperative blood loss and postoperative drainage, shorter postoperative bedridden time, and can get more obvious short-term improvement of low back pain and function.
Objective To explore the clinical application value of the spinal robot-assisted surgical system in mild to moderate lumbar spondylolisthesis and evaluate the accuracy of its implantation. Methods The clinical data of 56 patients with Meyerding grade Ⅰ or Ⅱ lumbar spondylolisthesis who underwent minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) between January 2017 and December 2017 were retrospectively analysed. Among them, 28 cases were preoperatively planned with robotic arm and percutaneous pedicle screw placement according to preoperative planning (group A); the other 28 cases underwent fluoroscopy-guided percutaneous pedicle screw placement (group B). There was no significant difference in gender, age, body mass index, slippage type, Meyerding grade, and surgical segmental distribution between the two groups (P>0.05). The screw insertion angle was measured by CT, the accuracy of screw implantation was evaluated by Neo’s criteria, and the invasion of superior articular process was evaluated by Babu’s method. Results One hundred and twelve screws were implanted in the two groups respectively, 5 screws (4.5%) in group A and 26 screws (23.2%) in group B penetrated the lateral wall of pedicle, and the difference was significant (χ2=9.157, P=0.002); the accuracy of nail implantation was assessed according to Neo’s criteria, the results were 107 screws of degree 0, 3 of degree 1, 2 of degree 2 in group A, and 86 screws of degree 0, 16 of degree 1, 6 of degree 2, 4 of degree 3 in group B, showing significant difference between the two groups (Z=4.915, P=0.031). In group B, 20 (17.9%) screws penetrated the superior articular process, while in group A, 80 screws were removed from the decompression side, and only 3 (3.8%) screws penetrated the superior articular process. According to Babu’s method, the degree of screw penetration into the facet joint was assessed. The results were 77 screws of grade 0, 2 of grade 1, 1 of grade 2 in group A, and 92 screws of grade 0, 13 of grade 1, 4 of grade 2, 3 of grade 3 in group B, showing significant difference between the two groups (Z=7.814, P=0.029). The screw insertion angles of groups A and B were (23.5±6.6)° and (18.1±7.5)° respectively, showing significant difference (t=3.100, P=0.003). Conclusion Compared to fluoroscopy-guided percutaneous pedicle screw placement, robot-assisted percutaneous pedicle screw placement has the advantages such as greater accuracy, lower incidence of screw penetration of the pedicle wall and invasion of the facet joints, and has a better screw insertion angle. Combined with MIS-TLIF, robot-assisted percutaneous pedicle screw placement is an effective minimally invasive treatment for lumbar spondylolisthesis.