| 1. | Tsang J Y, Wright A, Carr M J, et al. Risk of falls and fractures in individuals with cataract, age-related macular degeneration, or glaucoma. JAMA Ophthalmol, 2024, 142(2): 96-106. | 
				                                                        
				                                                            
				                                                                | 2. | Miotto S, Zemella N, Gusson E, et al. Morphologic criteria of lesion activity in neovascular age-related macular degeneration: a consensus article. Journal of Ocular Pharmacology and Therapeutics, 2018, 34(3): 298-308. | 
				                                                        
				                                                            
				                                                                | 3. | 邵毅, 温佳怡, 令倩. 年龄相关性黄斑变性诊断与治疗规范: 2022年英国皇家眼科医学会指南解读. 眼科新进展, 2023, 43(2): 85-88. | 
				                                                        
				                                                            
				                                                                | 4. | Bakri S J, Thorne J E, Ho A C, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmology, 2019, 126(1): 55-63. | 
				                                                        
				                                                            
				                                                                | 5. | Deng Y, Qiao L, Du M, et al. Age-related macular degeneration: epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes Dis, 2021, 9(1): 62-79. | 
				                                                        
				                                                            
				                                                                | 6. | Wang J, He Y, Fang W, et al. Unsupervised domain adaptation model for lesion detection in retinal OCT images. Phys Med Biol, 2021, 66: 215006. | 
				                                                        
				                                                            
				                                                                | 7. | Lupidi M, Cerquaglia A, Chhablani J, et al. Optical coherence tomography angiography in age-related macular degeneration: the game changer. Eur J Ophthalmol, 2018, 28(4): 349-357. | 
				                                                        
				                                                            
				                                                                | 8. | Wang J, Li W, Chen Y, et al. Weakly supervised anomaly segmentation in retinal OCT images using an adversarial learning approach. Biomedical Optics Express, 2021, 12(8): 4713-4729. | 
				                                                        
				                                                            
				                                                                | 9. | 汪荣贵, 姚旭晨, 杨娟, 等. 基于深度迁移学习的微型细粒度图像分类. 光电工程, 2019, 46(6): 26-35. | 
				                                                        
				                                                            
				                                                                | 10. | 齐永锋, 吕雪超, 裴晓旭, 等. 基于生成对抗网络的高光谱图像分类. 光电子·激光, 2021, 32(12): 1285-1292. | 
				                                                        
				                                                            
				                                                                | 11. | Lee C S, Baughman D M, Lee A Y. Deep learning is effective for the classification of OCT images of normal versus age-related macular degeneration. Ophthalmol Retina, 2017, 1(4): 322-327. | 
				                                                        
				                                                            
				                                                                | 12. | Serener A, Serte S. Dry and wet age-related macular degeneration classification using oct images and deep learning//2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul: IEEE, 2019: 1-4. | 
				                                                        
				                                                            
				                                                                | 13. | Wang W, Xu Z, Yu W, et al. Two-stream CNN with loose pair training for multi-modal AMD categorization//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019, Shenzhen: Springer International Publishing, 2019: 156-164. | 
				                                                        
				                                                            
				                                                                | 14. | Vaghefi E, Hill S, Kersten H M, et al. Multi-modal retinal image analysis via deep learning for the diagnosis of intermediate dry age-related macular degeneration: a feasibility study. Journal of Ophthalmology, 2020, 2020: 7493419. | 
				                                                        
				                                                            
				                                                                | 15. | Xu Z, Wang W, Yang J, et al. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks. British Journal of Ophthalmology, 2021, 105(4): 561-566. | 
				                                                        
				                                                            
				                                                                | 16. | Hwang D K, Hsu C C, Chang K J, et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics, 2019, 9(1): 232-245. | 
				                                                        
				                                                            
				                                                                | 17. | E Haihong, Ding J, Yuan L. SAE-wAMD: a self-attention enhanced convolution neural network for fine-grained classification of wet age-related macular degeneration using OCT image//2022 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Xi’an: IEEE, 2023: 619-627. | 
				                                                        
				                                                            
				                                                                | 18. | Ma Z, Xie Q, Xie P, et al. HCTNet: a hybrid ConvNet-Transformer network for retinal optical coherence tomography image classification. Biosensors, 2022, 12(7): 542. | 
				                                                        
				                                                            
				                                                                | 19. | 杨文逸, 陈明惠, 吴玉全, 等. 采用自注意力机制的OCT图像AMD亚型分类研究. 光学技术, 2024, 50(1): 112-119. | 
				                                                        
				                                                            
				                                                                | 20. | 许伟濠, 张伯泉, 刘银萍. 基于热力图和注意力机制的单目6D姿态估计算法. 微电子学与计算机, 2023, 40(7): 45-54. | 
				                                                        
				                                                            
				                                                                | 21. | Shaw P, Uszkoreit J, Vaswani A. Self-attention with relative position representations. arXiv preprint, 2018, arXiv: 1803.02155. | 
				                                                        
				                                                            
				                                                                | 22. | Liu Z, Lin Y, Cao Y, et al. Swin transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal: IEEE, 2021: 10012-10022. | 
				                                                        
				                                                            
				                                                                | 23. | Hu J, Shen L, Sun G. Squeeze-and-excitation networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City: IEEE, 2018: 7132-7141. | 
				                                                        
				                                                            
				                                                                | 24. | Hu J, Shen L, Albanie S, et al. Gather-excite: exploiting feature context in convolutional neural networks//32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal: NIPS, 2018, 31: 1-11. | 
				                                                        
				                                                            
				                                                                | 25. | Park J, Woo S, Lee J Y, et al. BAM: bottleneck attention module. arXiv preprint, 2018, arXiv: 1807.06514. | 
				                                                        
				                                                            
				                                                                | 26. | Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module//Proceedings of the European Conference on Computer Vision (ECCV), Munich: IEEE, 2018: 3-19. | 
				                                                        
				                                                            
				                                                                | 27. | Zhang H, Yang S, Zhang X. Automatic recognition and classification of microalgae using an inception-v3 convolution neural network model. International Journal of Environmental Science and Technology, 2023, 21(4): 4625-4634. | 
				                                                        
				                                                            
				                                                                | 28. | Anand R, Lakshmi V S, Pandey B K. An enhanced ResNet-50 deep learning model for arrhythmia detection using electrocardiogram biomedical indicators. Evolving Systems, 2023, 15(1): 83-97. | 
				                                                        
				                                                            
				                                                                | 29. | Saluja S, Trivedi M C, Sarangdevot S S. Advancing glioma diagnosis: Integrating custom U-Net and VGG-16 for improved grading in MR imaging. Math Biosci Eng, 2024, 21(3): 4328-4350. |