1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
2. |
Ta N, Chen H P, Lyu Y, et al. Ble-net: boundary learning and enhancement network for polyp segmentation. Multimedia Systems, 2023, 29(5): 3041-3054.
|
3. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich: Springer International Publishing, 2015: 234-241.
|
4. |
Thanh N C, Long T Q. CRF-EfficientUNet: an improved UNet framework for polyp segmentation in colonoscopy images with combined asymmetric loss function and CRF-RNN layer. IEEE Access, 2021, 9: 156987-157001.
|
5. |
Chenarlogh V A, Shabanzadeh A, Oghli M G, et al. Clinical target segmentation using a novel deep neural network: double attention Res-U-Net. Sci Rep, 2022, 12(1): 6717.
|
6. |
Kaur A, Kaur L, Singh A. GA-UNet: UNet-based framework for segmentation of 2D and 3D medical images applicable on heterogeneous datasets. Neural Computing and Applications, 2021, 33(21): 14991-15025.
|
7. |
Jha D, Riegler M A, Johansen D, et al. Doubleu-net: a deep convolutional neural network for medical image segmentation//2020 IEEE 33rd International symposium on computer-based medical systems (CBMS), Rochester: IEEE, 2020: 558-564.
|
8. |
Zhong J F, Wang W, Wu H S, et al. PolypSeg: an efficient context-aware network for polyp segmentation from colonoscopy videos//Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima: Springer International Publishing, 2020: 285-294.
|
9. |
Zhang W, Fu C, Zheng Y, et al. HSNet: A hybrid semantic network for polyp segmentation. Comput Biol Med, 2022, 150: 106173.
|
10. |
Pan S, Liu X, Xie N, et al. EG-TransUNet: a transformer-based U-Net with enhanced and guided models for biomedical image segmentation. BMC Bioinformatics, 2023, 24(1): 85.
|
11. |
Tomar N K, Jha D, Riegler M A, et al. Fanet: a feedback attention network for improved biomedical image segmentation. IEEE Trans Neural Netw Learn Syst, 2022, 34(11): 9375-9388.
|
12. |
Shen Y, Jia X, Meng M Q. HRENet: a hard region enhancement network for polyp segmentation//Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg: Springer International Publishing, 2021: 559-568.
|
13. |
孙福艳, 王琼, 吕宗旺, 等. 深度学习在结肠息肉分割中的应用综述. 计算机工程与应用, 2023, 59(23): 15-27.
|
14. |
Liu C, Zhang S, Hu M, et al. Object detection in remote sensing images based on adaptive multi-scale feature fusion method. Remote Sensing, 2024, 16(5): 907.
|
15. |
Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13713-13722.
|
16. |
Ding Z Q, Zhang Y J, Zhu C X, et al. CAT-Unet: an enhanced U-Net architecture with coordinate attention and skip-neighborhood attention transformer for medical image segmentation. Information Sciences, 2024, 670: 120578.
|
17. |
Yang Z M, Wu Q L, Zhang F, et al. A new semantic segmentation method for remote sensing images integrating coordinate attention and SPD-Conv. Symmetry, 2023, 15(5): 1037.
|
18. |
Jha D, Smedsrud P H, Riegler M A, et al. Kvasir-SEG: a segmented polyp dataset//MultiMedia modeling: 26th international conference (MMM 2020), Daejeon: Springer International Publishing, 2020: 451-462.
|
19. |
Bernal J, Sánchez F J, Fernández-Esparrach G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput Med Imaging Graph, 2015, 43: 99-111.
|
20. |
Chowdhury D, Dey A K, Ghosh K, et al. Retinal vessel segmentation using a novel U-Net architecture with data augmentation//International Conference on Human-Centric Smart Computing, Singapore: Springer Nature Singapore, 2023: 357-372.
|
21. |
Diederik P K. Adam: a method for stochastic optimization. arXiv preprint, 2014, arXiv: 1412.6980.
|
22. |
Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-Net. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
|
23. |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. Unet++: a nested U-Net architecture for medical image segmentation//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop (DLMIA 2018), Granada: Springer International Publishing, 2018, 11045: 3-11.
|
24. |
Wang J, Sun K, Cheng T, et al. Deep high-resolution representation learning for visual recognition. IEEE Trans Pattern Anal Mach Intell, 2020, 43(10): 3349-3364.
|
25. |
Ates G C, Mohan P, Celik E. Dual cross-attention for medical image segmentation. Engineering Applications of Artificial Intelligence, 2023, 126: 107139.
|
26. |
Zuo B, Lee F F, Chen Q. An efficient U-shaped network combined with edge attention module and context pyramid fusion for skin lesion segmentation. Medical & Biological Engineering & Computing, 2022, 60(7): 1987-2000.
|
27. |
Raymann J, Rajalakshmi R. GAR-Net: guided attention residual network for polyp segmentation from colonoscopy video frames. Diagnostics, 2022, 13(1): 123.
|
28. |
Tomar N K, Srivastava A, Bagci U, et al. Automatic polyp segmentation with multiple kernel dilated convolution network//2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS). Shenzen: IEEE, 2022: 317-322.
|
29. |
Jha D, Smedsrud P H, Riegler M A, et al. Resunet++: an advanced architecture for medical image segmentation//2019 IEEE international symposium on multimedia (ISM). San Diego: IEEE, 2019: 225-2255.
|
30. |
Xu Q, Ma Z C, He N, et al. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation. Computers in Biology and Medicine, 2023, 154: 106626.
|
31. |
Gao Y, Che X, Xu H, et al. An enhanced feature extraction network for medical image segmentation. Applied Sciences, 2023, 13(12): 6977.
|