1. |
Cacciatore S, Spadafora L, Bernardi M, et al. Management of coronary artery disease in older adults: recent advances and gaps in evidence. J Clin Med, 2023, 12(16): 5233.
|
2. |
Min J K, Shaw L J, Berman D S. The present state of coronary computed tomography angiography: a process in evolution. J Am Coll Cardiol, 2010, 55(10): 957-965.
|
3. |
Dai J, Li Y, He K, et al. R-FCN: object detection via region-based fully convolutional networks. Advances in Neural Information Processing Systems, 2016, 29: 5-10.
|
4. |
Siddique N, Paheding S, Elkin C P, et al. U-Net and its variants for medical image segmentation: a review of theory and applications. IEEE Access, 2021, 9: 82031-82057.
|
5. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015) , 2015: 234-241.
|
6. |
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
|
7. |
Lin G, Milan A, Shen C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1925-1934.
|
8. |
Guo C, Szemenyei M, Yi Y, et al. SA-UNet: spatial attention U-Net for retinal vessel segmentation//International Conference on Pattern Recognition (ICPR) , 2021: 1236-1242.
|
9. |
Jin Q, Meng Z, Sun C, et al. RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. Frontiers in Bioengineering and Biotechnology, 2020, 8: 605132.
|
10. |
Baheti B, Innani S, Gajre S, et al. Eff-UNet: a novel architecture for semantic segmentation in unstructured environment//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle: IEEE, 2020: 1473-1481.
|
11. |
Han K, Xiao A, Wu E, et al. Transformer in transformer. Advances in Neural Information Processing Systems, 2021, 34: 15908-15919.
|
12. |
Chen J, Lu Y, Yu Q, et al. TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint, 2021, arXiv: 2102. 04306.
|
13. |
Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation. Computer Vision-ECCV 2022 Workshops (ECCV 2022), Springer, 2023, 13803: 205-218.
|
14. |
Huang X, Deng Z, Li D, et al. MISSFormer: an effective medical image segmentation transformer. arXiv preprint, 2021, arXiv: 2109. 07162.
|
15. |
Zhao H, Jia J, Koltun V. Exploring self-attention for image recognition//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10076-10085.
|
16. |
Zhang H, Goodfellow I, Metaxas D, et al. Self-attention generative adversarial networks//International Conference on Machine Learning, 2019: 7354-7363.
|
17. |
Wang X, Girshick R, Gupta A, et al. Non-local neural networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
|
18. |
Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint, 2018, arXiv, 1810. 04805.
|
19. |
Gaál G, Maga B, Lukács A. Attention U-Net based adversarial architectures for chest x-ray lung segmentation. arXiv preprint, 2020, arXiv: 2003. 10304.
|
20. |
Yin H, Vahdat A, Alvarez J M, et al. A-vit: Adaptive tokens for efficient vision transformer// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 10809-10818.
|
21. |
Lin D, Li Y, Cheng Y, et al. Multi-view 3D object retrieval leveraging the aggregation of view and instance attentive features. Knowledge-Based Systems, 2022, 247: 108754.
|
22. |
Song R, Zhang W, Zhao Y, et al. Unsupervised multi-view CNN for salient view selection and 3D interest point detection. International Journal of Computer Vision, 2022, 130(5): 1210-1227.
|
23. |
Sun K, Zhang J, Liu J, et al. DRCNN: dynamic routing convolutional neural network for multi-view 3d object recognition. IEEE Transactions on Image Processing (TIP), 2021, 30: 868-877.
|
24. |
Zheng D, Zheng X, Yang L T, et al. MFFN: multi-view feature fusion network for camouflaged object detection//2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa: IEEE, 2023: 6221-6231.
|
25. |
Zhu Q, Wang Y, Chu X, et al. Multi-view coupled self-attention network for pulmonary nodules classification//Proceedings of the Asian Conference on Computer Vision. 2022, 1384, 6: 37-51.
|
26. |
Kingma D P, Ba J. Adam: a method for stochastic optimization. arXiv preprint, 2014, arXiv: 1412. 6980.
|
27. |
Zeng A, Wu C, Lin G, et al. ImageCAS: a large-scale dataset and benchmark for coronary artery segmentation based on computed tomography angiography images. Computerized Medical Imaging and Graphics, 2023, 109: 102287.
|
28. |
Hatamizadeh A, Tang Y, Nath V, et al. UNETR: transformers for 3D medical image segmentation//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 574-584.
|
29. |
Lee H H, Bao S, Huo Y, et al. 3D UX-Net: a large kernel volumetric convnet modernizing hierarchical transformer for medical image segmentation. arXiv preprint, 2022, arXiv: 2209. 15076.
|
30. |
Zhao C, Xiang S, Wang Y, et al. Context-aware network fusing transformer and V-Net for semi-supervised segmentation of 3D left atrium. Expert Systems with Applications, 2023, 214: 119105.
|
31. |
Dong C, Xu S, Dai D, et al. A novel multi-attention, multi-scale 3D deep network for coronary artery segmentation. Medical Image Analysis, 2023, 85: 102745.
|