1. |
Hong I S. Endometrial stem/progenitor cells: properties, origins, and functions. Genes Dis, 2022, 10(3): 931-947.
|
2. |
曹瑾瑾, 李佳, 李奇灵, 等. 子宫内膜癌筛查策略. 中国实用妇科与产科杂志, 2023, 39(11): 1062-1065.
|
3. |
Ge L, Liu G, Hu K, et al. A new risk index combining d-dimer, fibrinogen, HE4, and CA199 differentiates suspecting endometrial cancer from patients with abnormal vaginal bleeding or discharge. Technol Cancer Res Treat, 2020, 19: 1533033819901117.
|
4. |
Huang G Q, Xi Y Y, Zhang C J, et al. Serum human epididymis protein 4 combined with carbohydrate antigen 125 for endometrial carcinoma diagnosis: a meta-analysis and systematic review. Genet Test Mol Biomarkers, 2019, 23(8): 580-588.
|
5. |
Wang J, Wang Y, Li Y, et al. Trend and characteristics of endometrial cancer in guangzhou from 2000 to 2020. Eur J Obstet Gynecol Reprod Biol, 2025, 305: 381-386.
|
6. |
李芳, 张果, 王建六. 子宫内膜癌筛查研究进展. 中国妇产科临床杂志, 2025, 26(2): 152-155.
|
7. |
Baker-Rand H, Kitson S J. Recent advances in endometrial cancer prevention, early diagnosis and treatment. Cancers, 2024, 16(5): 1028.
|
8. |
王尧鑫, 吴昆华. 子宫内膜癌的影像组学研究进展. 中国医学影像学杂志, 2022, 30(6): 630-634.
|
9. |
Shen Y, Yang W, Liu J, et al. Minimally invasive approaches for the early detection of endometrial cancer. Molecular Cancer, 2023, 22(1): 53.
|
10. |
王晓君, 刘军秀. 人工智能在妇科恶性肿瘤中的进展. 中山大学学报, 2025, 46(1): 21-29.
|
11. |
冯龙锋, 陈英, 周滔辉, 等. CT图像肺及肺病变区域分割方法综述. 中国图象图形学报, 2022, 27(3): 722-749.
|
12. |
田苗苗, 支力佳, 张少敏, 等. 医学CT影像超分辨率深度学习方法综述. 计算机工程与应用, 2024, 60(3): 44-60.
|
13. |
Guo L, Yu Y, Yang F, et al. Accuracy of baseline low-dose computed tomography lung cancer screening: a systematic review and meta-analysis. Chinese Medical Journal, 2023, 136(9): 1047-1056.
|
14. |
金涛, 王震, 李昭蒂. 基于多尺度注意力U-Net的医学肝脏计算机断层扫描图片分割算法. 哈尔滨工程大学学报, 2025, 46(3): 529-539.
|
15. |
扈拯宁, 黄强, 谢尧, 等. 基于卷积神经网络的卵巢囊腺瘤CT图像病灶分割. 计算机应用与软件, 2025, 42(1): 189-196.
|
16. |
石军, 王天同, 朱子琦, 等. 基于深度学习的医学图像分割方法综述. 中国图象图形学报, 2025, 30(6): 2161-2186.
|
17. |
Rai H M. Cancer detection and segmentation using machine learning and deep learning techniques: a review. Multimedia Tools and Applications, 2024, 83(9): 27001-27035.
|
18. |
张玮智, 于谦, 苏金善, 等. 从U-Net到Transformer: 深度模型在医学图像分割中的应用综述. 计算机应用, 2024, 44(1): 204-222.
|
19. |
Wang Y, Chen Z, Liu C, et al. Radiomics-based fertility-sparing treatment in endometrial carcinoma: a review. Insights into Imaging, 2023, 14(1): 127.
|
20. |
Reeder K, Lee H. Impact of artificial intelligence on US medical students' choice of radiology. Clinical Imaging, 2022, 81: 67-71.
|
21. |
Chen X, Wang Y, Shen M, et al. Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: a preliminary study in a single institution. European Radiology, 2020, 30(9): 4985-4994.
|
22. |
Kurata Y, Nishio M, Moribata Y, et al. Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network. Scientific Reports, 2021, 11(1): 14440.
|
23. |
Mao W, Chen C, Gao H, et al. A deep learning-based automatic staging method for early endometrial cancer on MRI images. Frontiers in Physiology, 2022, 13: 974245.
|
24. |
Li D, Hu R, Li H, et al. Performance of automatic machine learning versus radiologists in the evaluation of endometrium on computed tomography. Abdominal Radiology, 2021, 46(11): 5316-5324.
|
25. |
Kim N, Chang J S, Kim Y B, et al. Atlas-based auto-segmentation for postoperative radiotherapy planning in endometrial and cervical cancers. Radiation Oncology, 2020, 15(1): 106.
|
26. |
Li C, Qiang Y, Sultan R I, et al. FocalUNETR: a focal transformer for boundary-aware prostate segmentation using CT images//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2023: 592-602.
|
27. |
Guo M H, Xu T X, Liu J J, et al. Attention mechanisms in computer vision: a survey. Computational Visual Media, 2022, 8(3): 331-368.
|
28. |
Yang L, Zhang R Y, Li L, et al. Simam: a simple, parameter-free attention module for convolutional neural networks//International Conference on Machine Learning, Vienna: PMLR, 2021: 11863-11874.
|
29. |
Yao M, Zhao G, Zhang H, et al. Attention spiking neural networks. IEEE Trans Pattern Anal Mach Intell, 2023, 45(8): 9393-9410.
|
30. |
Tang D, Li C, Du T, et al. ECPC-IDS: a benchmark endometrial cancer PET/CT image dataset for evaluation of semantic segmentation and detection of hypermetabolic regions. Computers in Biology and Medicine, 2024, 171: 108217.
|
31. |
潘丹, 骆根强, 曾安. 基于Transformer和卷积神经网络双并行分支编码器神经网络的冠状动脉分割. 生物医学工程学杂志, 2024, 41(6): 1195-1203,1212.
|
32. |
武星, 陶晨杰, 李智, 等. 基于通道权重和数据效用特征的医学图像分割数据增强方法. 生物医学工程学杂志, 2024, 41(2): 220-227,236.
|
33. |
Ranneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich: Springer International Publishing, 2015: 234-241.
|
34. |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39(12): 2481-2495.
|
35. |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation//Proceedings of the European conference on computer vision (ECCV), Munich: EACV, 2018: 801-818.
|
36. |
Wang S, Li L, Zhuang X. AttU-Net: attention U-Net for brain tumor segmentation//International MICCAI brainlesion workshop. Cham: Springer International Publishing, 2021: 302-311.
|
37. |
Xiao Z, Du M, Liu J, et al. EA-UNet based segmentation method for OCT image of uterine cavity. Photonics, 2023, 10(1): 73.
|
38. |
Jin S, Yu S, Peng J, et al. A novel medical image segmentation approach by using multi-branch segmentation network based on local and global information synchronous learning. Scientific Reports, 2023, 13(1): 6762.
|
39. |
Chen B, Liu Y, Zhang Z, et al. Transattunet: multi-level attention-guided U-net with transformer for medical image segmentation. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 8(1): 55-68.
|
40. |
Tang H, Chen Y, Wang T, et al. HTC-Net: a hybrid cnn-transformer framework for medical image segmentation. Biomedical Signal Processing and Control, 2024, 88: 105605.
|