OBJECTIVE: To summarize the application of simple skin traction technique in repair of soft tissue defect of limb. METHODS: From 1999, 42 cases of soft tissue defect of limbs were repaired by simple skin traction technique instantly; the defect area ranged from 2.5 cm x 2.0 cm to 8.0 cm x 6.5 cm. RESULTS: The soft tissue defect less than 8.0 cm can be sutured instantly. All of the wound achieved primary healing without infection and necrosis of skin edge, the circulation and sensation of limbs were normal; healing time was 10 days to 16 days, 12.8 days on average. Thirty-two cases were followed up for 6 months; the shape and function recovered well. CONCLUSION: Simple skin traction technique is a good option to repair the soft tissue defect of limbs.
For observation of the change of transforming growth factor-beta 1 (TGF-beta 1) gene expression in the process of skin wound healing, the following experiments were performed. Sixteen Wistar rats were chosen. At each side of the rat’s back, a 1 cm x 1.5 cm middle-thick skin wound was made. After 3, 6, 9 and 12 days, the specimens were taken from the wounds. For each specimen, half of it was used for RNA extraction, and underwent dot blotting; and the other half was frozen immediately and underwent in situ hybridization. The probes were dig-labeled PDGF-BB cDNA probe and TGF-beta 1 probe. The results showed that TGF-beta 1 gene was expressed mainly in fibroblast, epithelial cell and capillary endothelial cell. The peak of TGF-beta 1 mRNA content was in the 6th day postoperatively. After that, the content of TGF-beta 1 decreased to normal. It was suggested that TGF-beta 1 gene expression was in close relation with healing process. TGF-beta 1 may play an important regulatory role in the skin wound healing.
Objective To study the effects of dermal template on the biological behaviors of fibroblasts during wound healing. Methods A total of 120 rats were made fullthickness wound modes on the dorsum and divided into 4 groups,in group 1, the wounds were allowed to heal by contraction(ConT);in group2, the wounds covered with fullthickness skin grafts( FTSG); in group 3, the wounds were with split thickness skin grafts (STSG); and ingroup 4, the wounds were covered by dermal regeneration template with overlying thin splitthickness autograft (ADMT).The specimens were obtained at one week, two weeks, four weeks, six weeks,and twelve weeks respectively. The expressions of α smooth muscle actin(αSMA,characteristic of MFB),fibronectin(FN),integrin α2,β1 and transforming growth factor β1(TGF-β1) were examined by immunohistochemical analysis. Results Positive expression of α-SMA、FN、integrin α2β1 and TGF-β1 in ADMT groups was significantly lower than that in STSG group and ConT group, but higher than that in FTSG group(P<0.05). Conclusion Dermal regeneration template can inhibit the transformation of FB to MFB and restrain the expressionof FN,integrin α2,β1,and TGF-β1 in fibroblasts which might reduce thepossibility of hypertrophyic scaring, and improve wound healing.
To summarize the effectiveness of the improv ed surgical techniques in fasciocutaneous flaps of the limbs. MethodsFrom February 1999 to December 2005, 58 patients (39 males, 19 females, aged 1068 years) underwent repairs of the skin defects with improved fasciaocu taneous flaps of the limbs. Twentyone patients had the skin defects in front of the tibial bone in the middle and lower parts, 12 patients had the skin defect s in the heels, 16 patients had the skin defects in the ankles, 3 patients had t he skin defects around the knees, 1 patient had a wide sacrococcygeal bedsore, and 5 patients had the skin defects in the wrists and hands. The wounds ranged in size from 5 cm×3 cm to 18 cm× 12 cm. According to the wound lo cations, the following flaps were selected: 4 cutaneous antebrachii medialis nerve and basilic vein fasciocutaneous flaps, 1 cutaneous antebrachii lateralis nerve and cephalic vein fasciocutaneous flap, 3 saphenous nerve and great saphenousvein fasciocutaneous flaps, 1 cutaneous nerve of thigh posterior fasciocutaneous flap, 32 reverse sural nerve and saphenous vein fasciocutaneous flaps, and 17 reverse saphenous nerve and great saphenous vein fasciocutaneous flaps. The dissected flaps ranged in size from 6 cm× 4 cm to 18 cm× 13 cm. The donor wounds underwent straight sutures in 39 patients, and the skin grafting (6 cm×3 cm to 13 cm× 6 cm) was performed on 19 patients after the donor wounds were closed. Results The wounds healed by first intention, and the flaps survived completely in 54 patients. The flaps developed partial necrosis in 4 patients. The followup for 120 months (average, 8 months) revealed that the flaps had a satisfactory appearance with a soft texture and the function was also satisfactory. Conclusion A fasciocutaneous flap of the limbs is an ideal flap for repairing defects in the skins and soft tissues of the limbs. The survival rate of the flap can be further improved by an improvement of the surgical techniques.
In order to preserve the major vessels of the extremities in the repair and reconstruction of wounds of the extremities, the distally based fascial pedicled island flap was applied clinically. Its axis and rotatary point were designed along orientation of the major arteries, and the blood supply was from the abundant vascular networks in the deep fascia. Twenty-two cases with exposure of tendon and bone including 10 upper limbs and 12 lower limbs were treated. The flap area of forearm ranged from 7 cm x 8 cm to 12 cm x 9 cm and the ratio of the length to width of the pedicle was 1: 1-2. The flap area of the calf ranged from 10 cm x 6 cm to 16.5 cm x 12 cm and the ratio of the length to width of the pedicle was 2:1. The rotatary angle was 130 degrees-170 degrees. After operation, 18 flaps were survived completely, 2 cases had partial necrosis on the margin, 2 failures received cross-leg flap in the second operation. The patients were followed up with an average of 13.5 months (ranged from 3 months to 2 years). The conclusions were as follows: 1. the blood supply of this type of flap was reliable and the major arteries of the extremities needed not to be sacrificed; 2. the preparation of the flap was easy and the survival rate was satisfactory; 3. the shortcomings of this flap were unsightly incision scar and the limited size of flap and; 4. during the operation, the compression of the pedicle must be avoided.
OBJECTIVE: To investigate the effect of nerve growth factor(NGF) on the burn wound healing and to study the mechanism of burn wound healing. METHODS: Six domestic pigs weighting around 20 kg were used as experimental animals. Twenty-four burn wound, each 2.5 cm in diameter, were induced on every pigs by scalding. Three different concentrations of NGF, 1 microgram/ml, 2.5 micrograms/ml, 5 micrograms/ml were topically applied after thermal injury, and saline solution used as control group. Biopsy specimens were taken at 3, 5 and 9 days following treatment and immunohistochemistry method was used to detect the epidermal growth factor(EGF), EGF receptor (EGF-R), NGF, NGF receptor (NGF-R), NGF, NGF-R, CD68 and CD3. RESULTS: The expression of EGF, EGF-R, NGF, NGF-R CD68 and CD3 were observed in the experimental group, especially at 5 and 9 days, no expression of those six items in the control group. CONCLUSION: NGF can not only act directly on burn wound, but also modulate other growth factors on the burn wound to accelerate the healing of burn wound.
This paper systematically reviews the important events and their significance in different stages of the construction of the Chinese discipline system of wound repair, and puts forward the following suggestions for its future development: the disciplinary content should be more normalized, standardized and organized; it is necessary to break through policy restrictions, and establish multidisciplinary integrated management, seamlessly connected treatment model, and integrated combination of therapy and rehabilitation, basing on models and standards of research-oriented hospitals and departments; the application of information technology in the discipline should be strengthened; some other items and problems, such as medical management, medical supervision and medical insurance, need further in-depth research and specific solutions.
Objective The amniotic carrier complex membrane, which contains bFGF and vitamin C (VitC) and is loaded with BMSCs, is planted into the deeply-partial wounds of rabbits. To explore its influence on the epidermis renascence and regenerating speed in the process of the dermis restore. Methods BMSCs were isolated from the marrows of 24 healthy3-month-old New Zealand rabbits, male or female, weighing 1.0-1.5 kg. The BMSCs were cultured in vitro and purified, and then amniotic carrier complex membrane was prepared, whose size was 4.52 cm2. Three deep-partial wounds, with the area of about 3.14 cm2, were produced on the back of each rabbit. All the wounds were randomly divided into 3 groups: group A, group B and group C. Group A was the experimental group in which the amniotic carrier complex membrane was planted, including 1 ml BMSCs, 10 mL bFGF (0.2 mg/L) and 10 mL VitC (0.02 g/L). In group B, the amniotic carrier complex membrane was planted, including only 1 mL BMSCs. In group C, the amniotic carrier complex membrane alone was planted. After the operation, general observation was conducted. At postoperative 7, 14 and 21 days, respectively, the observation by HE, Masson, Van Giesonr staining and immunohistochemical staining of collagen type I was performed. The ink perfusion method was performed to evaluate the velocity and the qual ity of the wound heal ing after the transplantation. Results All the wounds obtained good heal ing. At 14 days after the operation, the ratio of wound heal ing was 60%, 41% and 23% in groups A, B and C, respectively. At 21 days after the operation, the the ratio of wound heal ing was 99%, 90% and 81% in groups A, B and C, respectively. There were significant differences between any two groups (P lt; 0.05). The depth of the newborn dermis, the number of the active collagen type I mascul ine cells and the number of the blood vessels in group A were better and more than in group B. And those in group B were better and more than in group C. At the exterior area of the newborn dermis, there was lots of regenerated epidermis from the peripheral normal skin, which in group A was better than in group B, and in group B was better than in group C. onclusion The amniotic carrier complex membrane transplanted to deep-partial wounds, which is appended withBMSCs, bFGF and VitC, can accelerate repair and reconstruction of the dermis. There has an optimal time of the renascence and regeneration of the epidermis in the process of dermis repair.
Objective To observe the expression and distribution of transforming growth factor-β1 (TGF-β1) in the healing process of bile duct and discuss its function and significance in the process of benign biliary stricture formation. Methods An injury to bile duct of dog was made and then repaired. The expression and distribution of TGF-β1 in the tissue at different time of the healing process were studied after operation with immunohistochemical SP staining. Results TGF-β1 staining was observed in the granulation tissue, fibroblasts and endothelial cells of blood vessels. High expression of TGF-β1 was observed in the healing process lasting for a long time. Conclusion The high expression of TGF-β1 is related closely with the fibroblast proliferating activity, extracellular matrix overdeposition and scar proliferation in the healing process of bile duct.
Objective To construct a bioengineered dermis containing microencapsulated nerve growth factor (NGF) expressing -NIH3T3 cells and to study the effect of the microencapsule on the bioengineered dermis and acute wound healing. Methods A recombinant NGF (PcDNA3.1+/NGF) was constructed and transfected intoNIH-3T3 cells using FuFENETM6 transfection reagent. Positive cell strain was cultured and enclosed in alginate-polylysine-alginate(APA) microcapsules in vitro. Bioengineered dermis was incorporated with NGF-expressing micorencapsules and human fibroblast cells as seed cells using tissue engineering method. The characteristics of the dermis were described by the content of Hydroxyproline(Hyp), HE staining. The content of NGF in the dermis culturing supernatant was measured by ELISA method. These bioengineered dermis were transplanted onto the acute circular full thickness excisional wounds on the dorsum of each swine to observe the rate of reepithelization and wound healing: NGFNIH3T3 microencapsulations(group A), NIH3T3 microencapsulations( group B), empty microencapsulations (group C), NGF incorporated with collagenⅠ( group D) and blank (group E as control group). Results NGF can be tested stably about 124.32 pg/ml in the dermis culturing supernatant after 6 weeks, and the content of Hyp in group A was 69.68±6.20(mg/g wet weight) and increased about 2 times when compared with control groups after 1 week. The tissue engineering skin grafts which can secrete NGF were used to ure the acute wounds and the rate of reepithelization was promoted. The periods of wound healing were 25±2 days in group A, 34±3 days in group B, 34±2 days in group C, 33±2 days in group D and 40±3 days in group E.The period of wound healing was decreased about 10 days at least. Conclusion NGF-expressing NIH3T3 microencapsulates can promote the quality of bioengineered dermis and alsopromote acute wound healing.