west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "nerve injury" 57 results
  • THE EMERGENT REPAIR OF PERIPHERAL NERVE INJURY OF THE WRIST

    OBJECTIVE To investigate the effect of the emergent repair of peripheral nerve injury of the wrist. METHODS From July 1993 to December 1997, 17 cases were admitted, which 21 injured peripheral nerves were repaired emergently. Among them, there were 11 cases of median nerve injury, 2 cases of ulnar nerve injury and 4 cases of median and ulnar nerve injury. All the nerves were ruptured completely except one which was partially ruptured. The emergent operation was taken and the injured nerves were repaired by microsurgical technique. RESULTS Followed up 6 to 18 months after operation, 95.25% injured nerves had good outcome. CONCLUSION Because of the specific structure of the wrist, nerve injury at this part need to be repaired emergently. It can enhance the regeneration of the injured nerve, preserve the function of the intrinsic muscle of hand, and decrease the local adhesion.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • Research progress of decellularized extracellular matrix hydrogel for peripheral nerve injury

    Peripheral nerve injury (PNI) is a common neurological dysfunction. In clinical practice, autologous nerve transplantation is used to solve problems related to PNI, such as limited donor resources, neuroma formation and high donor incidence rate. Therefore, searching for new nerve regeneration materials has become a hot research topic. The decellularized extracellular matrix (dECM) hydrogel provides a scaffold for nerve regeneration by removing the cellular components in biological tissues, preserving the extracellular matrix, and is a potential therapeutic material for nerve regeneration. This article reviews the research progress of dECM hydrogel for PNI and looks forward to the clinical prospects of this research direction.

    Release date:2024-08-21 02:11 Export PDF Favorites Scan
  • Changes of endogenous Spastin expression after sciatic nerve injury in rats

    Objective To investigate the expression change of endogenous Spastin after sciatic nerve injury in rats, and to discuss the role and significance in the peripheral nerve regeneration. Methods Thirty-six adult male Sprague Dawley rats weighing 180–220 g were randomly divided into the experimental group (n=30) and the control group (n=6). Sciatic nerve compression damage model was established in the experimental group, and the sciatic nerve was only exposed in the control group. The L4-6 spinal cord tissue was obtained to detect Spastin mRNA and protein levels by real-time fluorescence quantitative PCR and Western blot at 1, 3, 7, 14, and 28 days after operation in the experimental group (n=6) and at 7 days in the control group. Meanwhile, the sciatic nerve at 5 mm distal to the injured site was obtained to observe the ultrastructure of the distal axon by transmission electron microscope (TEM). Results The expression trends of Spastin gene and Spastin protein in L4-6 spinal cord tissue of 2 groups were basically identical. In the experimental group, the expressions of Spastin gene and protein decreased at the beginning, and then increased; the expressions reduced to the minimum at 7 days after operation, and came back to the initial level at 28 days. The expression levels of Spastin mRNA and protein at 3, 7, and 14 days were significantly lower in the experimental group than the control group (P<0.05), but no significant difference was noted between 2 groups at 1 and 28 days (P>0.05). The expression levels of Spastin mRNA and protein at 3, 7, and 14 days were significantly lower than those at 1 and 28 days in the experimental group (P<0.05), but no significant difference was noted between at 1 day and 28 days (P>0.05). At 1, 3, and 7 days after operation, the myelin damage was observed by TEM; at 14 days, there were regenerating Schwann cells; at 28 days, a large number of myelinated nerve fibers were seen, which were closed to normal form. Conclusion In the process of sciatic nerve regeneration after injury, a complex succession of changes take place in the expression of endogenous Spastin protein in rats, indicating that Spastin protein plays an important role in the process.

    Release date:2017-02-15 09:26 Export PDF Favorites Scan
  • MORPHOLOGICAL CHANGES AND ELECTROPHYSIOLOGICAL STUDY OF MOTOR NEURON OF SPINAL CORD FOLLOWING DELAYED REPAIR OF PERIPHERAL NERVE INJURY

    OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.

    Release date:2016-09-01 11:05 Export PDF Favorites Scan
  • Effect of removing microglia from spinal cord on nerve repair after spinal cord injury in mice

    Objective To investigate the effects of removing microglia from spinal cord on nerve repair and functional recovery after spinal cord injury (SCI) in mice. MethodsThirty-nine 6-week-old female C57BL/6 mice were randomly divided into control group (n=12), SCI group (n=12), and PLX3397+SCI group (n=15). The PLX3397+SCI group received continuous feeding of PLX3397, a colony-stimulating factor 1 receptor inhibitor, while the other two groups were fed a standard diet. After 14 days, both the SCI group and the PLX3397+SCI group were tested for ionized calcium binding adapter molecule 1 (Iba1) to confirm that the PLX3397+SCI group had completely depleted the spinal cord microglia. The SCI model was then prepared by clamping the spinal cord in both the SCI group and the PLX3397+SCI group, while the control group underwent laminectomy. Preoperatively and at 1, 3, 7, 14, 21, and 28 days postoperatively, the Basso Mouse Scale (BMS) was used to assess the hind limb function of mice in each group. At 28 days, a footprint test was conducted to observe the gait of the mice. After SCI, spinal cord tissue from the injury site was taken, and Iba1 immunofluorescence staining was performed at 7 days to observe the aggregation and proliferation of microglia in the spinal cord. HE staining was used to observe the formation of glial scars at the injury site at 28 days; glial fibrillary acidic protein (GFAP) immunofluorescence staining was applied to astrocytes to assess the extent of the injured area; neuronal nuclei antigen (NeuN) immunofluorescence staining was used to evaluate neuronal survival. And 5-hydroxytryptamine (5-HT) immunofluorescence staining was performed to assess axonal survival at 60 days. Results All mice survived until the end of the experiment. Immunofluorescence staining revealed that the microglia in the spinal cord of the PLX3397+SCI group decreased by more than 95% compared to the control group after 14 days of continuous feeding with PLX3397 (P<0.05). Compared to the control group, the BMS scores in the PLX3397+SCI group and the SCI group significantly decreased at different time points after SCI (P<0.05). Moreover, the PLX3397+SCI group showed a further decrease in BMS scores compared to the SCI group, and exhibited a dragging gait. The differences between the two groups were significant at 14, 21, and 28 days (P<0.05). HE staining at 28 days revealed that the SCI group had formed a well-defined and dense gliotic scar, while the PLX3397+SCI group also developed a gliotic scar, but with a more blurred and loose boundary. Immunofluorescence staining revealed that the number of microglia near the injury center at 7 days increased in the SCI group than in the control group, but the difference between groups was not significant (P>0.05). In contrast, the PLX3397+SCI group showed a significant reduction in microglia compared to both the control and SCI groups (P<0.05). At 28 days after SCI, the area of spinal cord injury in the PLX3397+SCI group was significantly larger than that in SCI group (P<0.05); the surviving neurons significantly reduced compared with the control group and SCI group (P<0.05). The axonal necrosis and retraction at 60 days after SCI were more obvious. ConclusionThe removal of microglia in the spinal cord aggravate the tissue damage after SCI and affecte the recovery of motor function in mice, suggesting that microglia played a neuroprotective role in SCI.

    Release date:2025-06-11 03:21 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE FUNCTIONAL RESERVE OF ULNAR NERVE IN RATS

    Objective  To study the functional change of nerve trunk after removing the partial bundles of ulnar nerve, to propose the concept of functional reserve of peripheral nerves and to investigate the functional reserve quantity of peripheral nerves. Methods  Two hundred and twenty SD rats (male or female), aging 3 months and weighing 300-350 g, were randomized into the experimental group and the control group (n=110 per group). And the experimental group wassubdivided into group 1/8, group 1/4, group 1/3, group 1/2 and group 2/3 according to the resection portion (n=22 per group). In the experimental group, the section of the lowest level on ulnar nerve trunks was exposed, and a certain portion of its bundles was separated and cut, while in the control group the bundles were only separated without resection. The general condition of all rats was observed, and the motoneurons in cornu anterius medullae spinal is were detected at 1 week, 2 weeks and 2 months after operation. The neuro-electrophysiology and the function of dominated muscles were detected at 2 weeks, 2 months, 3 months, and 4 months after operation. Results All the rats survived without infection and obvious ulcer in the l imbs. The number of motoneurons in cornu anterius medullae spinal is in various experimental subgroups witnessed no obvious changes (P gt; 0.05). The superstructure changed obviously at the early postoperative stage in group 1/2 and group 2/3, but restored well at 2 months after operation. For the latent period of evoked potential, there was no significant difference between the various experimental subgroups and the control group at each time point (P gt; 0.05), but there was a significant difference among the various experimental subgroups when compared the time points of 2, 3 and 4 months to that of 2 weeks (P lt; 0.05) and no statistically significant difference at other time points (P gt; 0.05). For the wave ampl itude of evoked potential of motor nerves, the maximum wave ampl itude and the persistence time of the dominate muscle, there were significant differences between the various experimental subgroups and the control group at each time point (P lt; 0.05), and there were significant differences among the various experimental subgroups when comparing the time points of 2, 3 and 4 months to that of 2 weeks (P lt; 0.05) and no statistical significance at other time points (Pgt; 0.05). Conclusion The functional reserve of the ulnar nerve withoutcompromise accounts the 1/3 of the whole trunk diameter.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • PROTECTIVE EFFECT OF TUMOR NECROSIS FACTOR-α ON MOTOR NEURONS AFTER PERIPHERAL NERVE INJURY

    OBJECTIVE: To investigate the protective effect of tumor necrosis factor-alpha(TNF-alpha) on spinal motor neurons after peripheral nerve injury. METHODS: Twenty Wistar rats were divided into two groups, the right sciatic nerves of 20 Wistar rats were transected, the proximal stumps were inserted into a single blind silicone tube. 16 microliters of normal saline(NS) and TNF-alpha(30 U/ml) were injected into the silicone tubes. After 2 weeks, the 4th, 5th lumbar spinal cord were taken for examination. Enzyme histochemical technique and image analysis were used to show acetylcholinesterase(AChE) and nitric oxide synthase(NOS) activity of spinal motor neurons. RESULTS: The number of AChE and NOS staining neurons were 8.65 +/- 1.98 and 5.92 +/- 1.36 in the experimental group and 6.37 +/- 1.42 and 8.67 +/- 1.45 in the control group respectively, there were significant difference between the two groups(P lt; 0.01). CONCLUSION: It suggests that TNF-alpha has protective effect on motor neurons after peripheral nerve injury.

    Release date:2016-09-01 10:28 Export PDF Favorites Scan
  • Research progress of anterior cutaneous nerve injury and repair in knee arthroplasty

    Objective To summarize the research progress of anterior cutaneous nerve injury and repair in knee arthroplasty. Methods The relevant literature at home and abroad in recent years was reviewed and summarized from the anatomy of anterior cutaneous nerve, nerve injury grade, clinical manifestations, prevention and treatment of anterior cutaneous nerve. Results The anterior cutaneous nerve injury is a common complication of knee arthroplasty. Because the anterior cutaneous nerve branches are many and thin, and mainly run between the first and second layers of fascia, this level is often ignored during surgical exposure. In addition, the knee arthroplasty does not routinely perform the exploration and repair of the cutaneous nerve. So the anterior cutaneous nerve injury is difficult to avoid, and can lead to postoperative skin numbness and knee pain. At present, studies have explored the feasibility of preventing its occurrence from the aspects of improved incision and intraoperative separation of protective nerve. There is no effective prevention and treatment measures for this complication. For patients with skin numbness after knee arthroplasty, the effectiveness of drug treatment is not clear. Local nerve block or nerve excision can be used to treat patients with painful symptoms after knee arthroplasty considering cutaneous pseudoneuroma. ConclusionKnee arthroplasty is widely used and anterior cutaneous nerve injury is common in clinic. In the future, more high-quality clinical studies are needed to further explore the prevention and treatment measures of this complication and evaluate the clinical benefits obtained.

    Release date:2023-05-11 04:44 Export PDF Favorites Scan
  • Urgent requirements for clinical translational studies in restoration of injured optic nerve

    The optic nerve belongs to the central nervous system (CNS). Because of the lack of neurotrophic factors in the microenvironment of the CNS and the presence of myelin and glial scar-related inhibitory molecules, and the inherent low renewal potentials of CNS neurons comparing to the peripheral nerve system, it is difficult to spontaneously regenerate the optic nerve after injury. Protecting damaged retinal ganglion cells (RGCs), supplementing neurotrophic factor, antagonizing axon regeneration inhibitory factor, and regulating the inherent regeneration potential of RGCs can effectively promote the regeneration and repair of optic nerve. Basic research has made important progress, including the restoration of visual function, but there are still a lot of unsolved problems in clinical translation of these achievements, so far there is no ideal method of treatment of optic nerve injury. Therefore, it is rather urgent to strengthen the cooperation between basic and clinical research, to promote the transformation of basic research to the clinical applications as soon as possible, which will change the unsatisfactory clinical application status.

    Release date:2017-11-20 02:25 Export PDF Favorites Scan
  • Research progress of peripheral nerve mismatch regeneration

    ObjectiveTo review the research progress of peripheral nerve mismatch regeneration, and to provide reference for its related basic research and clinical treatment.MethodsThe pathophysiology of peripheral nerve after injury, several main factors affecting the mismatch regeneration of peripheral nerve, and the fate of axon after mismatch regeneration were summarized by referring to the relevant literature at home and abroad in recent years.ResultsDistal pathways and target organs can selectively affect the mismatch regeneration of peripheral nerves; different phenotypes of Schwann cells have different effects on the mismatch regeneration of peripheral nerves; studying the mechanism of action of exosomes from different Schwann cells on different types of axons can provide a new direction for solving the mismatch regeneration of peripheral nerves.ConclusionPeripheral nerve mismatch regeneration is affected by various factors. However, the specific mechanism and characteristics of these factors remain to be further studied.

    Release date:2021-03-26 07:36 Export PDF Favorites Scan
6 pages Previous 1 2 3 ... 6 Next

Format

Content