west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "image segmentation" 16 results
  • Segmentation of anterior cruciate ligament images by fusing inflated convolution and residual hybrid attention

    Aiming at the problems of low accuracy and large difference of segmentation boundary distance in anterior cruciate ligament (ACL) image segmentation of knee joint, this paper proposes an ACL image segmentation model by fusing dilated convolution and residual hybrid attention U-shaped network (DRH-UNet). The proposed model builds upon the U-shaped network (U-Net) by incorporating dilated convolutions to expand the receptive field, enabling a better understanding of the contextual relationships within the image. Additionally, a residual hybrid attention block is designed in the skip connections to enhance the expression of critical features in key regions and reduce the semantic gap, thereby improving the representation capability for the ACL area. This study constructs an enhanced annotated ACL dataset based on the publicly available Magnetic Resonance Imaging Network (MRNet) dataset. The proposed method is validated on this dataset, and the experimental results demonstrate that the DRH-UNet model achieves a Dice similarity coefficient (DSC) of (88.01±1.57)% and a Hausdorff distance (HD) of 5.16±0.85, outperforming other ACL segmentation methods. The proposed approach further enhances the segmentation accuracy of ACL, providing valuable assistance for subsequent clinical diagnosis by physicians.

    Release date:2025-04-24 04:31 Export PDF Favorites Scan
  • Cardiac magnetic resonance image segmentation based on lightweight network and knowledge distillation strategy

    To address the issue of a large number of network parameters and substantial floating-point operations in deep learning networks applied to image segmentation for cardiac magnetic resonance imaging (MRI), this paper proposes a lightweight dilated parallel convolution U-Net (DPU-Net) to decrease the quantity of network parameters and the number of floating-point operations. Additionally, a multi-scale adaptation vector knowledge distillation (MAVKD) training strategy is employed to extract latent knowledge from the teacher network, thereby enhancing the segmentation accuracy of DPU-Net. The proposed network adopts a distinctive way of convolutional channel variation to reduce the number of parameters and combines with residual blocks and dilated convolutions to alleviate the gradient explosion problem and spatial information loss that might be caused by the reduction of parameters. The research findings indicate that this network has achieved considerable improvements in reducing the number of parameters and enhancing the efficiency of floating-point operations. When applying this network to the public dataset of the automatic cardiac diagnosis challenge (ACDC), the dice coefficient reaches 91.26%. The research results validate the effectiveness of the proposed lightweight network and knowledge distillation strategy, providing a reliable lightweighting idea for deep learning in the field of medical image segmentation.

    Release date:2024-12-27 03:50 Export PDF Favorites Scan
  • Study on the accuracy of automatic segmentation of knee CT images based on deep learning

    Objective To develop a neural network architecture based on deep learning to assist knee CT images automatic segmentation, and validate its accuracy. Methods A knee CT scans database was established, and the bony structure was manually annotated. A deep learning neural network architecture was developed independently, and the labeled database was used to train and test the neural network. Metrics of Dice coefficient, average surface distance (ASD), and Hausdorff distance (HD) were calculated to evaluate the accuracy of the neural network. The time of automatic segmentation and manual segmentation was compared. Five orthopedic experts were invited to score the automatic and manual segmentation results using Likert scale and the scores of the two methods were compared. Results The automatic segmentation achieved a high accuracy. The Dice coefficient, ASD, and HD of the femur were 0.953±0.037, (0.076±0.048) mm, and (3.101±0.726) mm, respectively; and those of the tibia were 0.950±0.092, (0.083±0.101) mm, and (2.984±0.740) mm, respectively. The time of automatic segmentation was significantly shorter than that of manual segmentation [(2.46±0.45) minutes vs. (64.73±17.07) minutes; t=36.474, P<0.001). The clinical scores of the femur were 4.3±0.3 in the automatic segmentation group and 4.4±0.2 in the manual segmentation group, and the scores of the tibia were 4.5±0.2 and 4.5±0.3, respectively. There was no significant difference between the two groups (t=1.753, P=0.085; t=0.318, P=0.752). Conclusion The automatic segmentation of knee CT images based on deep learning has high accuracy and can achieve rapid segmentation and three-dimensional reconstruction. This method will promote the development of new technology-assisted techniques in total knee arthroplasty.

    Release date:2022-06-08 10:32 Export PDF Favorites Scan
  • Medical image segmentation data augmentation method based on channel weight and data-efficient features

    In computer-aided medical diagnosis, obtaining labeled medical image data is expensive, while there is a high demand for model interpretability. However, most deep learning models currently require a large amount of data and lack interpretability. To address these challenges, this paper proposes a novel data augmentation method for medical image segmentation. The uniqueness and advantages of this method lie in the utilization of gradient-weighted class activation mapping to extract data efficient features, which are then fused with the original image. Subsequently, a new channel weight feature extractor is constructed to learn the weights between different channels. This approach achieves non-destructive data augmentation effects, enhancing the model's performance, data efficiency, and interpretability. Applying the method of this paper to the Hyper-Kvasir dataset, the intersection over union (IoU) and Dice of the U-net were improved, respectively; and on the ISIC-Archive dataset, the IoU and Dice of the DeepLabV3+ were also improved respectively. Furthermore, even when the training data is reduced to 70 %, the proposed method can still achieve performance that is 95 % of that achieved with the entire dataset, indicating its good data efficiency. Moreover, the data-efficient features used in the method have interpretable information built-in, which enhances the interpretability of the model. The method has excellent universality, is plug-and-play, applicable to various segmentation methods, and does not require modification of the network structure, thus it is easy to integrate into existing medical image segmentation method, enhancing the convenience of future research and applications.

    Release date:2024-04-24 09:50 Export PDF Favorites Scan
  • A generative adversarial network-based unsupervised domain adaptation method for magnetic resonance image segmentation

    Intelligent medical image segmentation methods have been rapidly developed and applied, while a significant challenge is domain shift. That is, the segmentation performance degrades due to distribution differences between the source domain and the target domain. This paper proposed an unsupervised end-to-end domain adaptation medical image segmentation method based on the generative adversarial network (GAN). A network training and adjustment model was designed, including segmentation and discriminant networks. In the segmentation network, the residual module was used as the basic module to increase feature reusability and reduce model optimization difficulty. Further, it learned cross-domain features at the image feature level with the help of the discriminant network and a combination of segmentation loss with adversarial loss. The discriminant network took the convolutional neural network and used the labels from the source domain, to distinguish whether the segmentation result of the generated network is from the source domain or the target domain. The whole training process was unsupervised. The proposed method was tested with experiments on a public dataset of knee magnetic resonance (MR) images and the clinical dataset from our cooperative hospital. With our method, the mean Dice similarity coefficient (DSC) of segmentation results increased by 2.52% and 6.10% to the classical feature level and image level domain adaptive method. The proposed method effectively improves the domain adaptive ability of the segmentation method, significantly improves the segmentation accuracy of the tibia and femur, and can better solve the domain transfer problem in MR image segmentation.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • New Approach of Fundus Image Segmentation Evaluation Based on Topology Structure

    In view of the evaluation of fundus image segmentation, a new evaluation method was proposed to make up insufficiency of the traditional evaluation method which only considers the overlap of pixels and neglects topology structure of the retinal vessel. Mathematical morphology and thinning algorithm were used to obtain the retinal vascular topology structure. Then three features of retinal vessel, including mutual information, correlation coefficient and ratio of nodes, were calculated. The features of the thinned images taken as topology structure of blood vessel were used to evaluate retinal image segmentation. The manually-labeled images and their eroded ones of STARE database were used in the experiment. The result showed that these features, including mutual information, correlation coefficient and ratio of nodes, could be used to evaluate the segmentation quality of retinal vessel on fundus image through topology structure, and the algorithm was simple. The method is of significance to the supplement of traditional segmentation evaluation of retinal vessel on fundus image.

    Release date: Export PDF Favorites Scan
  • A multi-scale feature capturing and spatial position attention model for colorectal polyp image segmentation

    Colorectal polyps are important early markers of colorectal cancer, and their early detection is crucial for cancer prevention. Although existing polyp segmentation models have achieved certain results, they still face challenges such as diverse polyp morphology, blurred boundaries, and insufficient feature extraction. To address these issues, this study proposes a parallel coordinate fusion network (PCFNet), aiming to improve the accuracy and robustness of polyp segmentation. PCFNet integrates parallel convolutional modules and a coordinate attention mechanism, enabling the preservation of global feature information while precisely capturing detailed features, thereby effectively segmenting polyps with complex boundaries. Experimental results on Kvasir-SEG and CVC-ClinicDB demonstrate the outstanding performance of PCFNet across multiple metrics. Specifically, on the Kvasir-SEG dataset, PCFNet achieved an F1-score of 0.897 4 and a mean intersection over union (mIoU) of 0.835 8; on the CVC-ClinicDB dataset, it attained an F1-score of 0.939 8 and an mIoU of 0.892 3. Compared with other methods, PCFNet shows significant improvements across all performance metrics, particularly in multi-scale feature fusion and spatial information capture, demonstrating its innovativeness. The proposed method provides a more reliable AI-assisted diagnostic tool for early colorectal cancer screening.

    Release date: Export PDF Favorites Scan
  • Medical image segmentation method based on self-attention and multi-view attention

    Most current medical image segmentation models are primarily built upon the U-shaped network (U-Net) architecture, which has certain limitations in capturing both global contextual information and fine-grained details. To address this issue, this paper proposes a novel U-shaped network model, termed the Multi-View U-Net (MUNet), which integrates self-attention and multi-view attention mechanisms. Specifically, a newly designed multi-view attention module is introduced to aggregate semantic features from different perspectives, thereby enhancing the representation of fine details in images. Additionally, the MUNet model leverages a self-attention encoding block to extract global image features, and by fusing global and local features, it improves segmentation performance. Experimental results demonstrate that the proposed model achieves superior segmentation performance in coronary artery image segmentation tasks, significantly outperforming existing models. By incorporating self-attention and multi-view attention mechanisms, this study provides a novel and efficient modeling approach for medical image segmentation, contributing to the advancement of intelligent medical image analysis.

    Release date: Export PDF Favorites Scan
  • An algorithm for three-dimensional plumonary parenchymal segmentation by integrating surfacelet transform with pulse coupled neural network

    In order to overcome the difficulty in lung parenchymal segmentation due to the factors such as lung disease and bronchial interference, a segmentation algorithm for three-dimensional lung parenchymal is presented based on the integration of surfacelet transform and pulse coupled neural network (PCNN). First, the three-dimensional computed tomography of lungs is decomposed into surfacelet transform domain to obtain multi-scale and multi-directional sub-band information. The edge features are then enhanced by filtering sub-band coefficients using local modified Laplacian operator. Second, surfacelet inverse transform is implemented and the reconstructed image is fed back to the input of PCNN. Finally, iteration process of the PCNN is carried out to obtain final segmentation result. The proposed algorithm is validated on the samples of public dataset. The experimental results demonstrate that the proposed algorithm has superior performance over that of the three-dimensional surfacelet transform edge detection algorithm, the three-dimensional region growing algorithm, and the three-dimensional U-NET algorithm. It can effectively suppress the interference coming from lung lesions and bronchial, and obtain a complete structure of lung parenchyma.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • Research and application of orthotopic DR chest radiograph quality control system based on artificial intelligence

    With the change of medical diagnosis and treatment mode, the quality of medical image directly affects the diagnosis and treatment of the disease for doctors. Therefore, realization of intelligent image quality control by computer will have a greater auxiliary effect on the radiographer’s filming work. In this paper, the research methods and applications of image segmentation model and image classification model in the field of deep learning and traditional image processing algorithm applied to medical image quality evaluation are described. The results demonstrate that deep learning algorithm is more accurate and efficient than the traditional image processing algorithm in the effective training of medical image big data, which explains the broad application prospect of deep learning in the medical field. This paper developed a set of intelligent quality control system for auxiliary filming, and successfully applied it to the Radiology Department of West China Hospital and other city and county hospitals, which effectively verified the feasibility and stability of the quality control system.

    Release date:2020-04-18 10:01 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content